* move docs -> source * Add files via upload * mv image * Add files via upload * colocate iOS setup doc * delete image * Add files via upload * fix * delete image * Add files via upload * Update developer_cookbook.md * toctree * wip subfolder * docs update * subfolder * updates * name * updates * index * updates * refactor structure * depth * docs * content * docs * getting started * distributions * fireworks * fireworks * update * theme * theme * theme * pdj theme * pytorch theme * css * theme * agents example * format * index * headers * copy button * test tabs * test tabs * fix * tabs * tab * tabs * sphinx_design * quick start commands * size * width * css * css * download models * asthetic fix * tab format * update * css * width * css * docs * tab based * tab * tabs * docs * style * image * css * color * typo * update docs * missing links * list templates * links * links update * troubleshooting * fix * distributions * docs * fix table * kill llamastack-local-gpu/cpu * Update index.md * Update index.md * mv ios_setup.md * Update ios_setup.md * Add remote_or_local.gif * Update ios_setup.md * release notes * typos * Add ios_setup to index * nav bar * hide torctree * ios image * links update * rename * rename * docs * rename * links * distributions * distributions * distributions * distributions * remove release * remote --------- Co-authored-by: dltn <6599399+dltn@users.noreply.github.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
8 KiB
Downloading Models
The llama
CLI tool helps you setup and use the Llama Stack. It should be available on your path after installing the llama-stack
package.
Installation
You have two ways to install Llama Stack:
-
Install as a package: You can install the repository directly from PyPI by running the following command:
pip install llama-stack
-
Install from source: If you prefer to install from the source code, follow these steps:
mkdir -p ~/local cd ~/local git clone git@github.com:meta-llama/llama-stack.git conda create -n myenv python=3.10 conda activate myenv cd llama-stack $CONDA_PREFIX/bin/pip install -e .
Downloading models via CLI
You first need to have models downloaded locally.
To download any model you need the Model Descriptor. This can be obtained by running the command
llama model list
You should see a table like this:
+----------------------------------+------------------------------------------+----------------+
| Model Descriptor | Hugging Face Repo | Context Length |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B | meta-llama/Llama-3.1-8B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B | meta-llama/Llama-3.1-70B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp8 | meta-llama/Llama-3.1-405B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B | meta-llama/Llama-3.1-405B-FP8 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B:bf16-mp16 | meta-llama/Llama-3.1-405B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-8B-Instruct | meta-llama/Llama-3.1-8B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-70B-Instruct | meta-llama/Llama-3.1-70B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp8 | meta-llama/Llama-3.1-405B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct | meta-llama/Llama-3.1-405B-Instruct-FP8 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.1-405B-Instruct:bf16-mp16 | meta-llama/Llama-3.1-405B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B | meta-llama/Llama-3.2-1B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B | meta-llama/Llama-3.2-3B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision | meta-llama/Llama-3.2-11B-Vision | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision | meta-llama/Llama-3.2-90B-Vision | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-1B-Instruct | meta-llama/Llama-3.2-1B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-3B-Instruct | meta-llama/Llama-3.2-3B-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-11B-Vision-Instruct | meta-llama/Llama-3.2-11B-Vision-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama3.2-90B-Vision-Instruct | meta-llama/Llama-3.2-90B-Vision-Instruct | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-11B-Vision | meta-llama/Llama-Guard-3-11B-Vision | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B:int4-mp1 | meta-llama/Llama-Guard-3-1B-INT4 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-1B | meta-llama/Llama-Guard-3-1B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B | meta-llama/Llama-Guard-3-8B | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-3-8B:int8-mp1 | meta-llama/Llama-Guard-3-8B-INT8 | 128K |
+----------------------------------+------------------------------------------+----------------+
| Prompt-Guard-86M | meta-llama/Prompt-Guard-86M | 128K |
+----------------------------------+------------------------------------------+----------------+
| Llama-Guard-2-8B | meta-llama/Llama-Guard-2-8B | 4K |
+----------------------------------+------------------------------------------+----------------+
To download models, you can use the llama download command.
Downloading from Meta
Here is an example download command to get the 3B-Instruct/11B-Vision-Instruct model. You will need META_URL which can be obtained from here
Download the required checkpoints using the following commands:
# download the 8B model, this can be run on a single GPU
llama download --source meta --model-id Llama3.2-3B-Instruct --meta-url META_URL
# you can also get the 70B model, this will require 8 GPUs however
llama download --source meta --model-id Llama3.2-11B-Vision-Instruct --meta-url META_URL
# llama-agents have safety enabled by default. For this, you will need
# safety models -- Llama-Guard and Prompt-Guard
llama download --source meta --model-id Prompt-Guard-86M --meta-url META_URL
llama download --source meta --model-id Llama-Guard-3-1B --meta-url META_URL
Downloading from Hugging Face
Essentially, the same commands above work, just replace --source meta
with --source huggingface
.
llama download --source huggingface --model-id Llama3.1-8B-Instruct --hf-token <HF_TOKEN>
llama download --source huggingface --model-id Llama3.1-70B-Instruct --hf-token <HF_TOKEN>
llama download --source huggingface --model-id Llama-Guard-3-1B --ignore-patterns *original*
llama download --source huggingface --model-id Prompt-Guard-86M --ignore-patterns *original*
Important: Set your environment variable HF_TOKEN
or pass in --hf-token
to the command to validate your access. You can find your token at https://huggingface.co/settings/tokens.
Tip: Default for
llama download
is to run with--ignore-patterns *.safetensors
since we use the.pth
files in theoriginal
folder. For Llama Guard and Prompt Guard, however, we need safetensors. Hence, please run with--ignore-patterns original
so that safetensors are downloaded and.pth
files are ignored.