* move docs -> source * Add files via upload * mv image * Add files via upload * colocate iOS setup doc * delete image * Add files via upload * fix * delete image * Add files via upload * Update developer_cookbook.md * toctree * wip subfolder * docs update * subfolder * updates * name * updates * index * updates * refactor structure * depth * docs * content * docs * getting started * distributions * fireworks * fireworks * update * theme * theme * theme * pdj theme * pytorch theme * css * theme * agents example * format * index * headers * copy button * test tabs * test tabs * fix * tabs * tab * tabs * sphinx_design * quick start commands * size * width * css * css * download models * asthetic fix * tab format * update * css * width * css * docs * tab based * tab * tabs * docs * style * image * css * color * typo * update docs * missing links * list templates * links * links update * troubleshooting * fix * distributions * docs * fix table * kill llamastack-local-gpu/cpu * Update index.md * Update index.md * mv ios_setup.md * Update ios_setup.md * Add remote_or_local.gif * Update ios_setup.md * release notes * typos * Add ios_setup to index * nav bar * hide torctree * ios image * links update * rename * rename * docs * rename * links * distributions * distributions * distributions * distributions * remove release * remote --------- Co-authored-by: dltn <6599399+dltn@users.noreply.github.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
19 KiB
Getting Started
:maxdepth: 2
:hidden:
distributions/self_hosted_distro/index
distributions/remote_hosted_distro/index
distributions/ondevice_distro/index
At the end of the guide, you will have learned how to:
- get a Llama Stack server up and running
- set up an agent (with tool-calling and vector stores) that works with the above server
To see more example apps built using Llama Stack, see llama-stack-apps.
Step 1. Starting Up Llama Stack Server
Decide Your Build Type
There are two ways to start a Llama Stack:
- Docker: we provide a number of pre-built Docker containers allowing you to get started instantly. If you are focused on application development, we recommend this option.
- Conda: the
llama
CLI provides a simple set of commands to build, configure and run a Llama Stack server containing the exact combination of providers you wish. We have provided various templates to make getting started easier.
Both of these provide options to run model inference using our reference implementations, Ollama, TGI, vLLM or even remote providers like Fireworks, Together, Bedrock, etc.
Decide Your Inference Provider
Running inference on the underlying Llama model is one of the most critical requirements. Depending on what hardware you have available, you have various options. Note that each option have different necessary prerequisites.
-
Do you have access to a machine with powerful GPUs? If so, we suggest:
-
Are you running on a "regular" desktop machine? If so, we suggest:
-
Do you have an API key for a remote inference provider like Fireworks, Together, etc.? If so, we suggest:
-
Do you want to run Llama Stack inference on your iOS / Android device If so, we suggest:
Please see our pages in detail for the types of distributions we offer:
- Self-Hosted Distribution: If you want to run Llama Stack inference on your local machine.
- Remote-Hosted Distribution: If you want to connect to a remote hosted inference provider.
- On-device Distribution: If you want to run Llama Stack inference on your iOS / Android device.
Quick Start Commands
Once you have decided on the inference provider and distribution to use, use the following quick start commands to get started.
1.0 Prerequisite
$ git clone git@github.com:meta-llama/llama-stack.git
::::{tab-set}
:::{tab-item} meta-reference-gpu
System Requirements
Access to Single-Node GPU to start a local server.
Downloading Models
Please make sure you have Llama model checkpoints downloaded in ~/.llama
before proceeding. See installation guide here to download the models.
$ ls ~/.llama/checkpoints
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
:::
:::{tab-item} tgi
System Requirements
Access to Single-Node GPU to start a TGI server. :::
:::{tab-item} ollama
System Requirements
Access to Single-Node CPU/GPU able to run ollama. :::
:::{tab-item} together
System Requirements
Access to Single-Node CPU with Together hosted endpoint via API_KEY from together.ai. :::
:::{tab-item} fireworks
System Requirements
Access to Single-Node CPU with Fireworks hosted endpoint via API_KEY from fireworks.ai. :::
::::
1.1. Start the distribution
(Option 1) Via Docker ::::{tab-set}
:::{tab-item} meta-reference-gpu
$ cd llama-stack/distributions/meta-reference-gpu && docker compose up
This will download and start running a pre-built Docker container. Alternatively, you may use the following commands:
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
:::
:::{tab-item} tgi
$ cd llama-stack/distributions/tgi/gpu && docker compose up
The script will first start up TGI server, then start up Llama Stack distribution server hooking up to the remote TGI provider for inference. You should see the following outputs --
[text-generation-inference] | 2024-10-15T18:56:33.810397Z INFO text_generation_router::server: router/src/server.rs:1813: Using config Some(Llama)
[text-generation-inference] | 2024-10-15T18:56:33.810448Z WARN text_generation_router::server: router/src/server.rs:1960: Invalid hostname, defaulting to 0.0.0.0
[text-generation-inference] | 2024-10-15T18:56:33.864143Z INFO text_generation_router::server: router/src/server.rs:2353: Connected
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
To kill the server
docker compose down
:::
:::{tab-item} ollama
$ cd llama-stack/distributions/ollama/cpu && docker compose up
You will see outputs similar to following ---
[ollama] | [GIN] 2024/10/18 - 21:19:41 | 200 | 226.841µs | ::1 | GET "/api/ps"
[ollama] | [GIN] 2024/10/18 - 21:19:42 | 200 | 60.908µs | ::1 | GET "/api/ps"
INFO: Started server process [1]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://[::]:5000 (Press CTRL+C to quit)
[llamastack] | Resolved 12 providers
[llamastack] | inner-inference => ollama0
[llamastack] | models => __routing_table__
[llamastack] | inference => __autorouted__
To kill the server
docker compose down
:::
:::{tab-item} fireworks
$ cd llama-stack/distributions/fireworks && docker compose up
Make sure your run.yaml
file has the inference provider pointing to the correct Fireworks URL server endpoint. E.g.
inference:
- provider_id: fireworks
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inference
api_key: <optional api key>
:::
:::{tab-item} together
$ cd distributions/together && docker compose up
Make sure your run.yaml
file has the inference provider pointing to the correct Together URL server endpoint. E.g.
inference:
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: <optional api key>
:::
::::
(Option 2) Via Conda
::::{tab-set}
:::{tab-item} meta-reference-gpu
-
Install the
llama
CLI. See CLI Reference -
Build the
meta-reference-gpu
distribution
$ llama stack build --template meta-reference-gpu --image-type conda
- Start running distribution
$ cd llama-stack/distributions/meta-reference-gpu
$ llama stack run ./run.yaml
:::
:::{tab-item} tgi
-
Install the
llama
CLI. See CLI Reference -
Build the
tgi
distribution
llama stack build --template tgi --image-type conda
-
Start a TGI server endpoint
-
Make sure in your
run.yaml
file, yourconda_env
is pointing to the conda environment and inference provider is pointing to the correct TGI server endpoint. E.g.
conda_env: llamastack-tgi
...
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
- Start Llama Stack server
llama stack run ./gpu/run.yaml
:::
:::{tab-item} ollama
If you wish to separately spin up a Ollama server, and connect with Llama Stack, you may use the following commands.
Start Ollama server.
- Please check the Ollama Documentations for more details.
Via Docker
docker run -d -v ollama:/root/.ollama -p 11434:11434 --name ollama ollama/ollama
Via CLI
ollama run <model_id>
Start Llama Stack server pointing to Ollama server
Make sure your run.yaml
file has the inference provider pointing to the correct Ollama endpoint. E.g.
conda_env: llamastack-ollama
...
inference:
- provider_id: ollama0
provider_type: remote::ollama
config:
url: http://127.0.0.1:11434
llama stack build --template ollama --image-type conda
llama stack run ./gpu/run.yaml
:::
:::{tab-item} fireworks
llama stack build --template fireworks --image-type conda
# -- modify run.yaml to a valid Fireworks server endpoint
llama stack run ./run.yaml
Make sure your run.yaml
file has the inference provider pointing to the correct Fireworks URL server endpoint. E.g.
conda_env: llamastack-fireworks
...
inference:
- provider_id: fireworks
provider_type: remote::fireworks
config:
url: https://api.fireworks.ai/inference
api_key: <optional api key>
:::
:::{tab-item} together
llama stack build --template together --image-type conda
# -- modify run.yaml to a valid Together server endpoint
llama stack run ./run.yaml
Make sure your run.yaml
file has the inference provider pointing to the correct Together URL server endpoint. E.g.
conda_env: llamastack-together
...
inference:
- provider_id: together
provider_type: remote::together
config:
url: https://api.together.xyz/v1
api_key: <optional api key>
:::
::::
1.2 (Optional) Update Model Serving Configuration
::::{tab-set}
:::{tab-item} meta-reference-gpu
You may change the config.model
in run.yaml
to update the model currently being served by the distribution. Make sure you have the model checkpoint downloaded in your ~/.llama
.
inference:
- provider_id: meta0
provider_type: meta-reference
config:
model: Llama3.2-11B-Vision-Instruct
quantization: null
torch_seed: null
max_seq_len: 4096
max_batch_size: 1
Run llama model list
to see the available models to download, and llama model download
to download the checkpoints.
:::
:::{tab-item} tgi
To serve a new model with tgi
, change the docker command flag --model-id <model-to-serve>
.
This can be done by edit the command
args in compose.yaml
. E.g. Replace "Llama-3.2-1B-Instruct" with the model you want to serve.
command: ["--dtype", "bfloat16", "--usage-stats", "on", "--sharded", "false", "--model-id", "meta-llama/Llama-3.2-1B-Instruct", "--port", "5009", "--cuda-memory-fraction", "0.3"]
or by changing the docker run command's --model-id
flag
docker run --rm -it -v $HOME/.cache/huggingface:/data -p 5009:5009 --gpus all ghcr.io/huggingface/text-generation-inference:latest --dtype bfloat16 --usage-stats on --sharded false --model-id meta-llama/Llama-3.2-1B-Instruct --port 5009
Make sure your run.yaml
file has the inference provider pointing to the TGI server endpoint serving your model.
inference:
- provider_id: tgi0
provider_type: remote::tgi
config:
url: http://127.0.0.1:5009
Run `llama model list` to see the available models to download, and `llama model download` to download the checkpoints.
:::
:::{tab-item} ollama
You can use ollama for managing model downloads.
ollama pull llama3.1:8b-instruct-fp16 ollama pull llama3.1:70b-instruct-fp16
> Please check the [OLLAMA_SUPPORTED_MODELS](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/adapters/inference/ollama/ollama.py) for the supported Ollama models.
To serve a new model with `ollama`
ollama run <model_name>
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
$ ollama ps
NAME ID SIZE PROCESSOR UNTIL llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
To verify that the model served by ollama is correctly connected to Llama Stack server
$ llama-stack-client models list +----------------------+----------------------+---------------+-----------------------------------------------+ | identifier | llama_model | provider_id | metadata | +======================+======================+===============+===============================================+ | Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} | +----------------------+----------------------+---------------+-----------------------------------------------+
:::
:::{tab-item} together
Use `llama-stack-client models list` to check the available models served by together.
$ llama-stack-client models list +------------------------------+------------------------------+---------------+------------+ | identifier | llama_model | provider_id | metadata | +==============================+==============================+===============+============+ | Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | together0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.1-70B-Instruct | Llama3.1-70B-Instruct | together0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.1-405B-Instruct | Llama3.1-405B-Instruct | together0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.2-3B-Instruct | Llama3.2-3B-Instruct | together0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.2-11B-Vision-Instruct | Llama3.2-11B-Vision-Instruct | together0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.2-90B-Vision-Instruct | Llama3.2-90B-Vision-Instruct | together0 | {} | +------------------------------+------------------------------+---------------+------------+
:::
:::{tab-item} fireworks
Use `llama-stack-client models list` to check the available models served by Fireworks.
$ llama-stack-client models list +------------------------------+------------------------------+---------------+------------+ | identifier | llama_model | provider_id | metadata | +==============================+==============================+===============+============+ | Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | fireworks0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.1-70B-Instruct | Llama3.1-70B-Instruct | fireworks0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.1-405B-Instruct | Llama3.1-405B-Instruct | fireworks0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.2-1B-Instruct | Llama3.2-1B-Instruct | fireworks0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.2-3B-Instruct | Llama3.2-3B-Instruct | fireworks0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.2-11B-Vision-Instruct | Llama3.2-11B-Vision-Instruct | fireworks0 | {} | +------------------------------+------------------------------+---------------+------------+ | Llama3.2-90B-Vision-Instruct | Llama3.2-90B-Vision-Instruct | fireworks0 | {} | +------------------------------+------------------------------+---------------+------------+
:::
::::
##### Troubleshooting
- If you encounter any issues, search through our [GitHub Issues](https://github.com/meta-llama/llama-stack/issues), or file an new issue.
- Use `--port <PORT>` flag to use a different port number. For docker run, update the `-p <PORT>:<PORT>` flag.
## Step 2. Run Llama Stack App
### Chat Completion Test
Once the server is set up, we can test it with a client to verify it's working correctly. The following command will send a chat completion request to the server's `/inference/chat_completion` API:
```bash
$ curl http://localhost:5000/inference/chat_completion \
-H "Content-Type: application/json" \
-d '{
"model": "Llama3.1-8B-Instruct",
"messages": [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Write me a 2 sentence poem about the moon"}
],
"sampling_params": {"temperature": 0.7, "seed": 42, "max_tokens": 512}
}'
Output:
{'completion_message': {'role': 'assistant',
'content': 'The moon glows softly in the midnight sky, \nA beacon of wonder, as it catches the eye.',
'stop_reason': 'out_of_tokens',
'tool_calls': []},
'logprobs': null}
Run Agent App
To run an agent app, check out examples demo scripts with client SDKs to talk with the Llama Stack server in our llama-stack-apps repo. To run a simple agent app:
$ git clone git@github.com:meta-llama/llama-stack-apps.git
$ cd llama-stack-apps
$ pip install -r requirements.txt
$ python -m examples.agents.client <host> <port>
You will see outputs of the form --
User> I am planning a trip to Switzerland, what are the top 3 places to visit?
inference> Switzerland is a beautiful country with a rich history, stunning landscapes, and vibrant culture. Here are three must-visit places to add to your itinerary:
...
User> What is so special about #1?
inference> Jungfraujoch, also known as the "Top of Europe," is a unique and special place for several reasons:
...
User> What other countries should I consider to club?
inference> Considering your interest in Switzerland, here are some neighboring countries that you may want to consider visiting: