llama-stack-mirror/docs/source/building_applications/rag.md
ehhuang c8a20b8ed0
feat: allow specifying specific tool within toolgroup (#1239)
Summary:

E.g. `builtin::rag::knowledge_search`

Test Plan:
```
LLAMA_STACK_CONFIG=fireworks pytest -s -v tests/client-sdk/agents/ --safety-shield meta-llama/Llama-Guard-3-8B
```
2025-02-26 14:07:05 -08:00

4.3 KiB

Using "Memory" or Retrieval Augmented Generation (RAG)

Memory enables your applications to reference and recall information from previous interactions or external documents.

Llama Stack organizes the memory APIs into three layers:

  • the lowermost APIs deal with raw storage and retrieval. These include Vector IO, KeyValue IO (coming soon) and Relational IO (also coming soon.)
  • next is the "Rag Tool", a first-class tool as part of the Tools API that allows you to ingest documents (from URLs, files, etc) with various chunking strategies and query them smartly.
  • finally, it all comes together with the top-level "Agents" API that allows you to create agents that can use the tools to answer questions, perform tasks, and more.
RAG System

The RAG system uses lower-level storage for different types of data:

  • Vector IO: For semantic search and retrieval
  • Key-Value and Relational IO: For structured data storage

We may add more storage types like Graph IO in the future.

Setting up Vector DBs

Here's how to set up a vector database for RAG:

# Register a vector db
vector_db_id = "my_documents"
response = client.vector_dbs.register(
    vector_db_id=vector_db_id,
    embedding_model="all-MiniLM-L6-v2",
    embedding_dimension=384,
    provider_id="faiss",
)

# You can insert a pre-chunked document directly into the vector db
chunks = [
    {
        "document_id": "doc1",
        "content": "Your document text here",
        "mime_type": "text/plain",
    },
]
client.vector_io.insert(vector_db_id=vector_db_id, chunks=chunks)

# You can then query for these chunks
chunks_response = client.vector_io.query(
    vector_db_id=vector_db_id, query="What do you know about..."
)

Using the RAG Tool

A better way to ingest documents is to use the RAG Tool. This tool allows you to ingest documents from URLs, files, etc. and automatically chunks them into smaller pieces.

from llama_stack_client.types import Document

urls = ["memory_optimizations.rst", "chat.rst", "llama3.rst"]
documents = [
    Document(
        document_id=f"num-{i}",
        content=f"https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/{url}",
        mime_type="text/plain",
        metadata={},
    )
    for i, url in enumerate(urls)
]

client.tool_runtime.rag_tool.insert(
    documents=documents,
    vector_db_id=vector_db_id,
    chunk_size_in_tokens=512,
)

# Query documents
results = client.tool_runtime.rag_tool.query(
    vector_db_ids=[vector_db_id],
    content="What do you know about...",
)

Building RAG-Enhanced Agents

One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:

from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.lib.agents.agent import Agent

# Configure agent with memory
agent_config = AgentConfig(
    model="meta-llama/Llama-3.2-3B-Instruct",
    instructions="You are a helpful assistant",
    enable_session_persistence=False,
    toolgroups=[
        {
            "name": "builtin::rag/knowledge_search",
            "args": {
                "vector_db_ids": [vector_db_id],
            },
        }
    ],
)

agent = Agent(client, agent_config)
session_id = agent.create_session("rag_session")

# Initial document ingestion
response = agent.create_turn(
    messages=[
        {"role": "user", "content": "I am providing some documents for reference."}
    ],
    documents=[
        {
            "content": "https://raw.githubusercontent.com/example/doc.rst",
            "mime_type": "text/plain",
        }
    ],
    session_id=session_id,
)

# Query with RAG
response = agent.create_turn(
    messages=[{"role": "user", "content": "What are the key topics in the documents?"}],
    session_id=session_id,
)

Unregistering Vector DBs

If you need to clean up and unregister vector databases, you can do so as follows:

# Unregister a specified vector database
vector_db_id = "my_vector_db_id"
print(f"Unregistering vector database: {vector_db_id}")
client.vector_dbs.unregister(vector_db_id=vector_db_id)


# Unregister all vector databases
for vector_db_id in client.vector_dbs.list():
    print(f"Unregistering vector database: {vector_db_id.identifier}")
    client.vector_dbs.unregister(vector_db_id=vector_db_id.identifier)