llama-stack-mirror/docs/source/distributions/building_distro.md
Wen Zhou 4bca4af3e4
Some checks failed
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 2s
Integration Tests / test-matrix (library, 3.12, agents) (push) Failing after 4s
Integration Tests / test-matrix (library, 3.12, post_training) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.13, datasets) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.13, tool_runtime) (push) Failing after 6s
Integration Tests / test-matrix (server, 3.12, post_training) (push) Failing after 6s
Integration Tests / test-matrix (server, 3.13, datasets) (push) Failing after 6s
Integration Tests / test-matrix (server, 3.13, post_training) (push) Failing after 5s
Integration Tests / test-matrix (server, 3.13, providers) (push) Failing after 5s
Integration Tests / test-matrix (library, 3.12, scoring) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.12, inference) (push) Failing after 26s
Integration Tests / test-matrix (library, 3.13, agents) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 11s
Integration Tests / test-matrix (library, 3.13, scoring) (push) Failing after 20s
Integration Tests / test-matrix (library, 3.13, inspect) (push) Failing after 18s
Integration Tests / test-matrix (library, 3.13, vector_io) (push) Failing after 20s
Integration Tests / test-matrix (server, 3.13, inspect) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 12s
Integration Tests / test-matrix (library, 3.12, datasets) (push) Failing after 36s
Integration Tests / test-matrix (library, 3.13, providers) (push) Failing after 22s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 9s
Integration Tests / test-matrix (library, 3.12, providers) (push) Failing after 21s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.12, inference) (push) Failing after 22s
Integration Tests / test-matrix (server, 3.12, scoring) (push) Failing after 15s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 9s
Integration Tests / test-matrix (server, 3.13, scoring) (push) Failing after 5s
Integration Tests / test-matrix (server, 3.12, datasets) (push) Failing after 32s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, inspect) (push) Failing after 23s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 10s
Integration Tests / test-matrix (server, 3.13, tool_runtime) (push) Failing after 7s
Integration Tests / test-matrix (server, 3.12, inspect) (push) Failing after 19s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 8s
Integration Tests / test-matrix (library, 3.13, inference) (push) Failing after 22s
Integration Tests / test-matrix (server, 3.12, agents) (push) Failing after 16s
Integration Tests / test-matrix (server, 3.13, agents) (push) Failing after 17s
Integration Tests / test-matrix (library, 3.12, vector_io) (push) Failing after 24s
Integration Tests / test-matrix (server, 3.12, providers) (push) Failing after 20s
Integration Tests / test-matrix (server, 3.13, inference) (push) Failing after 18s
Integration Tests / test-matrix (server, 3.12, vector_io) (push) Failing after 20s
Integration Tests / test-matrix (server, 3.13, vector_io) (push) Failing after 10s
Integration Tests / test-matrix (library, 3.12, tool_runtime) (push) Failing after 34s
Integration Tests / test-matrix (library, 3.13, post_training) (push) Failing after 33s
Integration Tests / test-matrix (server, 3.12, tool_runtime) (push) Failing after 30s
Python Package Build Test / build (3.12) (push) Failing after 9s
Test External Providers / test-external-providers (venv) (push) Failing after 8s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 12s
Unit Tests / unit-tests (3.13) (push) Failing after 8s
Python Package Build Test / build (3.13) (push) Failing after 39s
Update ReadTheDocs / update-readthedocs (push) Failing after 41s
Unit Tests / unit-tests (3.12) (push) Failing after 46s
Pre-commit / pre-commit (push) Successful in 1m30s
refactor: set proper name for embedding all-minilm:l6-v2 and update to use "starter" in detailed_tutorial (#2627)
# What does this PR do?
<!-- Provide a short summary of what this PR does and why. Link to
relevant issues if applicable. -->
- we are using `all-minilm:l6-v2` but the model we download from ollama
is `all-minilm:latest`
  latest: https://ollama.com/library/all-minilm:latest 1b226e2802db
  l6-v2: https://ollama.com/library/all-minilm:l6-v2 pin 1b226e2802db
- even currently they are exactly the same model but if
[all-minilm:l12-v2](https://ollama.com/library/all-minilm:l12-v2) is
updated, "latest" might not be the same for l6-v2.
- the only change in this PR is pin the model id in ollama
- also update detailed_tutorial with "starter" to replace deprecated
"ollama".

<!-- If resolving an issue, uncomment and update the line below -->
<!-- Closes #[issue-number] -->

## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
```
>INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
>llama stack build --run --template ollama --image-type venv
...
Build Successful!
You can find the newly-built template here: /home/wenzhou/zdtsw-forking/lls/llama-stack/llama_stack/templates/ollama/run.yaml
....
 - metadata:                                                                                                                                  
     embedding_dimension: 384                                                                                                                 
   model_id: all-MiniLM-L6-v2                                                                                                                 
   model_type: !!python/object/apply:llama_stack.apis.models.models.ModelType                                                                 
   - embedding                                                                                                                                
   provider_id: ollama                                                                                                                        
   provider_model_id: all-minilm:l6-v2  
   ...
```
test
```
>llama-stack-client inference chat-completion --message "Write me a 2-sentence poem about the moon"
           INFO:httpx:HTTP Request: GET http://localhost:8321/v1/models "HTTP/1.1 200 OK"
INFO:httpx:HTTP Request: POST http://localhost:8321/v1/openai/v1/chat/completions "HTTP/1.1 200 OK"
OpenAIChatCompletion(
    id='chatcmpl-04f99071-3da2-44ba-a19f-03b5b7fc70b7',
    choices=[
        OpenAIChatCompletionChoice(
            finish_reason='stop',
            index=0,
            message=OpenAIChatCompletionChoiceMessageOpenAIAssistantMessageParam(
                role='assistant',
                content="Here is a 2-sentence poem about the moon:\n\nSilver crescent in the midnight sky,\nLuna's gentle face, a beauty to the eye.",
                name=None,
                tool_calls=None,
                refusal=None,
                annotations=None,
                audio=None,
                function_call=None
            ),
            logprobs=None
        )
    ],
    created=1751644429,
    model='llama3.2:3b-instruct-fp16',
    object='chat.completion',
    service_tier=None,
    system_fingerprint='fp_ollama',
    usage={'completion_tokens': 33, 'prompt_tokens': 36, 'total_tokens': 69, 'completion_tokens_details': None, 'prompt_tokens_details': None}
)
```

---------

Signed-off-by: Wen Zhou <wenzhou@redhat.com>
2025-07-06 09:07:37 +05:30

435 lines
20 KiB
Markdown

# Build your own Distribution
This guide will walk you through the steps to get started with building a Llama Stack distribution from scratch with your choice of API providers.
### Setting your log level
In order to specify the proper logging level users can apply the following environment variable `LLAMA_STACK_LOGGING` with the following format:
`LLAMA_STACK_LOGGING=server=debug;core=info`
Where each category in the following list:
- all
- core
- server
- router
- inference
- agents
- safety
- eval
- tools
- client
Can be set to any of the following log levels:
- debug
- info
- warning
- error
- critical
The default global log level is `info`. `all` sets the log level for all components.
A user can also set `LLAMA_STACK_LOG_FILE` which will pipe the logs to the specified path as well as to the terminal. An example would be: `export LLAMA_STACK_LOG_FILE=server.log`
### Llama Stack Build
In order to build your own distribution, we recommend you clone the `llama-stack` repository.
```
git clone git@github.com:meta-llama/llama-stack.git
cd llama-stack
pip install -e .
```
Use the CLI to build your distribution.
The main points to consider are:
1. **Image Type** - Do you want a Conda / venv environment or a Container (eg. Docker)
2. **Template** - Do you want to use a template to build your distribution? or start from scratch ?
3. **Config** - Do you want to use a pre-existing config file to build your distribution?
```
llama stack build -h
usage: llama stack build [-h] [--config CONFIG] [--template TEMPLATE] [--list-templates] [--image-type {conda,container,venv}] [--image-name IMAGE_NAME] [--print-deps-only] [--run]
Build a Llama stack container
options:
-h, --help show this help message and exit
--config CONFIG Path to a config file to use for the build. You can find example configs in llama_stack/distributions/**/build.yaml. If this argument is not provided, you will
be prompted to enter information interactively (default: None)
--template TEMPLATE Name of the example template config to use for build. You may use `llama stack build --list-templates` to check out the available templates (default: None)
--list-templates Show the available templates for building a Llama Stack distribution (default: False)
--image-type {conda,container,venv}
Image Type to use for the build. If not specified, will use the image type from the template config. (default: None)
--image-name IMAGE_NAME
[for image-type=conda|container|venv] Name of the conda or virtual environment to use for the build. If not specified, currently active environment will be used if
found. (default: None)
--print-deps-only Print the dependencies for the stack only, without building the stack (default: False)
--run Run the stack after building using the same image type, name, and other applicable arguments (default: False)
```
After this step is complete, a file named `<name>-build.yaml` and template file `<name>-run.yaml` will be generated and saved at the output file path specified at the end of the command.
::::{tab-set}
:::{tab-item} Building from a template
To build from alternative API providers, we provide distribution templates for users to get started building a distribution backed by different providers.
The following command will allow you to see the available templates and their corresponding providers.
```
llama stack build --list-templates
```
```
------------------------------+-----------------------------------------------------------------------------+
| Template Name | Description |
+------------------------------+-----------------------------------------------------------------------------+
| watsonx | Use watsonx for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| vllm-gpu | Use a built-in vLLM engine for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| together | Use Together.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| tgi | Use (an external) TGI server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| starter | Quick start template for running Llama Stack with several popular providers |
+------------------------------+-----------------------------------------------------------------------------+
| sambanova | Use SambaNova for running LLM inference and safety |
+------------------------------+-----------------------------------------------------------------------------+
| remote-vllm | Use (an external) vLLM server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| postgres-demo | Quick start template for running Llama Stack with several popular providers |
+------------------------------+-----------------------------------------------------------------------------+
| passthrough | Use Passthrough hosted llama-stack endpoint for LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| open-benchmark | Distribution for running open benchmarks |
+------------------------------+-----------------------------------------------------------------------------+
| ollama | Use (an external) Ollama server for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| nvidia | Use NVIDIA NIM for running LLM inference, evaluation and safety |
+------------------------------+-----------------------------------------------------------------------------+
| meta-reference-gpu | Use Meta Reference for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| llama_api | Distribution for running e2e tests in CI |
+------------------------------+-----------------------------------------------------------------------------+
| hf-serverless | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| hf-endpoint | Use (an external) Hugging Face Inference Endpoint for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| groq | Use Groq for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| fireworks | Use Fireworks.AI for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| experimental-post-training | Experimental template for post training |
+------------------------------+-----------------------------------------------------------------------------+
| dell | Dell's distribution of Llama Stack. TGI inference via Dell's custom |
| | container |
+------------------------------+-----------------------------------------------------------------------------+
| ci-tests | Distribution for running e2e tests in CI |
+------------------------------+-----------------------------------------------------------------------------+
| cerebras | Use Cerebras for running LLM inference |
+------------------------------+-----------------------------------------------------------------------------+
| bedrock | Use AWS Bedrock for running LLM inference and safety |
+------------------------------+-----------------------------------------------------------------------------+
```
You may then pick a template to build your distribution with providers fitted to your liking.
For example, to build a distribution with TGI as the inference provider, you can run:
```
$ llama stack build --template starter
...
You can now edit ~/.llama/distributions/llamastack-starter/starter-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-starter/starter-run.yaml`
```
:::
:::{tab-item} Building from Scratch
If the provided templates do not fit your use case, you could start off with running `llama stack build` which will allow you to a interactively enter wizard where you will be prompted to enter build configurations.
It would be best to start with a template and understand the structure of the config file and the various concepts ( APIS, providers, resources, etc.) before starting from scratch.
```
llama stack build
> Enter a name for your Llama Stack (e.g. my-local-stack): my-stack
> Enter the image type you want your Llama Stack to be built as (container or conda or venv): conda
Llama Stack is composed of several APIs working together. Let's select
the provider types (implementations) you want to use for these APIs.
Tip: use <TAB> to see options for the providers.
> Enter provider for API inference: inline::meta-reference
> Enter provider for API safety: inline::llama-guard
> Enter provider for API agents: inline::meta-reference
> Enter provider for API memory: inline::faiss
> Enter provider for API datasetio: inline::meta-reference
> Enter provider for API scoring: inline::meta-reference
> Enter provider for API eval: inline::meta-reference
> Enter provider for API telemetry: inline::meta-reference
> (Optional) Enter a short description for your Llama Stack:
You can now edit ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml and run `llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml`
```
:::
:::{tab-item} Building from a pre-existing build config file
- In addition to templates, you may customize the build to your liking through editing config files and build from config files with the following command.
- The config file will be of contents like the ones in `llama_stack/templates/*build.yaml`.
```
llama stack build --config llama_stack/templates/starter/build.yaml
```
:::
:::{tab-item} Building with External Providers
Llama Stack supports external providers that live outside of the main codebase. This allows you to create and maintain your own providers independently or use community-provided providers.
To build a distribution with external providers, you need to:
1. Configure the `external_providers_dir` in your build configuration file:
```yaml
# Example my-external-stack.yaml with external providers
version: '2'
distribution_spec:
description: Custom distro for CI tests
providers:
inference:
- remote::custom_ollama
# Add more providers as needed
image_type: container
image_name: ci-test
# Path to external provider implementations
external_providers_dir: ~/.llama/providers.d
```
Here's an example for a custom Ollama provider:
```yaml
adapter:
adapter_type: custom_ollama
pip_packages:
- ollama
- aiohttp
- llama-stack-provider-ollama # This is the provider package
config_class: llama_stack_ollama_provider.config.OllamaImplConfig
module: llama_stack_ollama_provider
api_dependencies: []
optional_api_dependencies: []
```
The `pip_packages` section lists the Python packages required by the provider, as well as the
provider package itself. The package must be available on PyPI or can be provided from a local
directory or a git repository (git must be installed on the build environment).
2. Build your distribution using the config file:
```
llama stack build --config my-external-stack.yaml
```
For more information on external providers, including directory structure, provider types, and implementation requirements, see the [External Providers documentation](../providers/external.md).
:::
:::{tab-item} Building Container
```{admonition} Podman Alternative
:class: tip
Podman is supported as an alternative to Docker. Set `CONTAINER_BINARY` to `podman` in your environment to use Podman.
```
To build a container image, you may start off from a template and use the `--image-type container` flag to specify `container` as the build image type.
```
llama stack build --template starter --image-type container
```
```
$ llama stack build --template starter --image-type container
...
Containerfile created successfully in /tmp/tmp.viA3a3Rdsg/ContainerfileFROM python:3.10-slim
...
```
You can now edit ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml and run `llama stack run ~/meta-llama/llama-stack/tmp/configs/ollama-run.yaml`
```
Now set some environment variables for the inference model ID and Llama Stack Port and create a local directory to mount into the container's file system.
```
export INFERENCE_MODEL="llama3.2:3b"
export LLAMA_STACK_PORT=8321
mkdir -p ~/.llama
```
After this step is successful, you should be able to find the built container image and test it with the below Docker command:
```
docker run -d \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
localhost/distribution-ollama:dev \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
Here are the docker flags and their uses:
* `-d`: Runs the container in the detached mode as a background process
* `-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT`: Maps the container port to the host port for accessing the server
* `-v ~/.llama:/root/.llama`: Mounts the local .llama directory to persist configurations and data
* `localhost/distribution-ollama:dev`: The name and tag of the container image to run
* `--port $LLAMA_STACK_PORT`: Port number for the server to listen on
* `--env INFERENCE_MODEL=$INFERENCE_MODEL`: Sets the model to use for inference
* `--env OLLAMA_URL=http://host.docker.internal:11434`: Configures the URL for the Ollama service
:::
::::
### Running your Stack server
Now, let's start the Llama Stack Distribution Server. You will need the YAML configuration file which was written out at the end by the `llama stack build` step.
```
llama stack run -h
usage: llama stack run [-h] [--port PORT] [--image-name IMAGE_NAME] [--env KEY=VALUE]
[--image-type {conda,venv}] [--enable-ui]
[config | template]
Start the server for a Llama Stack Distribution. You should have already built (or downloaded) and configured the distribution.
positional arguments:
config | template Path to config file to use for the run or name of known template (`llama stack list` for a list). (default: None)
options:
-h, --help show this help message and exit
--port PORT Port to run the server on. It can also be passed via the env var LLAMA_STACK_PORT. (default: 8321)
--image-name IMAGE_NAME
Name of the image to run. Defaults to the current environment (default: None)
--env KEY=VALUE Environment variables to pass to the server in KEY=VALUE format. Can be specified multiple times. (default: None)
--image-type {conda,venv}
Image Type used during the build. This can be either conda or venv. (default: None)
--enable-ui Start the UI server (default: False)
```
**Note:** Container images built with `llama stack build --image-type container` cannot be run using `llama stack run`. Instead, they must be run directly using Docker or Podman commands as shown in the container building section above.
```
# Start using template name
llama stack run tgi
# Start using config file
llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
# Start using a venv
llama stack run --image-type venv ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
# Start using a conda environment
llama stack run --image-type conda ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
```
```
$ llama stack run ~/.llama/distributions/llamastack-my-local-stack/my-local-stack-run.yaml
Serving API inspect
GET /health
GET /providers/list
GET /routes/list
Serving API inference
POST /inference/chat_completion
POST /inference/completion
POST /inference/embeddings
...
Serving API agents
POST /agents/create
POST /agents/session/create
POST /agents/turn/create
POST /agents/delete
POST /agents/session/delete
POST /agents/session/get
POST /agents/step/get
POST /agents/turn/get
Listening on ['::', '0.0.0.0']:8321
INFO: Started server process [2935911]
INFO: Waiting for application startup.
INFO: Application startup complete.
INFO: Uvicorn running on http://['::', '0.0.0.0']:8321 (Press CTRL+C to quit)
INFO: 2401:db00:35c:2d2b:face:0:c9:0:54678 - "GET /models/list HTTP/1.1" 200 OK
```
### Listing Distributions
Using the list command, you can view all existing Llama Stack distributions, including stacks built from templates, from scratch, or using custom configuration files.
```
llama stack list -h
usage: llama stack list [-h]
list the build stacks
options:
-h, --help show this help message and exit
```
Example Usage
```
llama stack list
```
```
------------------------------+-----------------------------------------------------------------+--------------+------------+
| Stack Name | Path | Build Config | Run Config |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| together | ~/.llama/distributions/together | Yes | No |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| bedrock | ~/.llama/distributions/bedrock | Yes | No |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| starter | ~/.llama/distributions/starter | Yes | Yes |
+------------------------------+-----------------------------------------------------------------------------+--------------+
| remote-vllm | ~/.llama/distributions/remote-vllm | Yes | Yes |
+------------------------------+-----------------------------------------------------------------------------+--------------+
```
### Removing a Distribution
Use the remove command to delete a distribution you've previously built.
```
llama stack rm -h
usage: llama stack rm [-h] [--all] [name]
Remove the build stack
positional arguments:
name Name of the stack to delete (default: None)
options:
-h, --help show this help message and exit
--all, -a Delete all stacks (use with caution) (default: False)
```
Example
```
llama stack rm llamastack-test
```
To keep your environment organized and avoid clutter, consider using `llama stack list` to review old or unused distributions and `llama stack rm <name>` to delete them when they're no longer needed.
### Troubleshooting
If you encounter any issues, ask questions in our discord or search through our [GitHub Issues](https://github.com/meta-llama/llama-stack/issues), or file an new issue.