mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-07-04 05:12:35 +00:00
# What does this PR do? Simple approach to get some provider pages in the docs. Add or update description fields in the provider configuration class using Pydantic’s Field, ensuring these descriptions are clear and complete, as they will be used to auto-generate provider documentation via ./scripts/distro_codegen.py instead of editing the docs manually. Signed-off-by: Sébastien Han <seb@redhat.com>
1.3 KiB
1.3 KiB
inline::faiss
Description
Faiss is an inline vector database provider for Llama Stack. It allows you to store and query vectors directly in memory. That means you'll get fast and efficient vector retrieval.
Features
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
Usage
To use Faiss in your Llama Stack project, follow these steps:
- Install the necessary dependencies.
- Configure your Llama Stack project to use Faiss.
- Start storing and querying vectors.
Installation
You can install Faiss using pip:
pip install faiss-cpu
Documentation
See Faiss' documentation or the Faiss Wiki for more details about Faiss in general.
Configuration
Field | Type | Required | Default | Description |
---|---|---|---|---|
kvstore |
utils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfig |
No | sqlite |
Sample Configuration
kvstore:
type: sqlite
namespace: null
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db