See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
3.6 KiB
orphan |
---|
true |
Meta Reference Quantized Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-meta-reference-quantized-gpu
distribution consists of the following provider configurations:
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | inline::meta-reference-quantized |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::memory-runtime , remote::model-context-protocol |
vector_io | inline::faiss , remote::chromadb , remote::pgvector |
The only difference vs. the meta-reference-gpu
distribution is that it has support for more efficient inference -- with fp8, int4 quantization, etc.
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
Environment Variables
The following environment variables can be configured:
LLAMA_STACK_PORT
: Port for the Llama Stack distribution server (default:5001
)INFERENCE_MODEL
: Inference model loaded into the Meta Reference server (default:meta-llama/Llama-3.2-3B-Instruct
)INFERENCE_CHECKPOINT_DIR
: Directory containing the Meta Reference model checkpoint (default:null
)
Prerequisite: Downloading Models
Please make sure you have llama model checkpoints downloaded in ~/.llama
before proceeding. See installation guide here to download the models. Run llama model list
to see the available models to download, and llama model download
to download the checkpoints.
$ ls ~/.llama/checkpoints
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
Running the Distribution
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-quantized-gpu \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
If you are using Llama Stack Safety / Shield APIs, use:
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-meta-reference-quantized-gpu \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
Via Conda
Make sure you have done pip install llama-stack
and have the Llama Stack CLI available.
llama stack build --template meta-reference-quantized-gpu --image-type conda
llama stack run distributions/meta-reference-quantized-gpu/run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run distributions/meta-reference-quantized-gpu/run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
--env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B