mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-04 12:07:34 +00:00
# What does this PR do?
BREAKING CHANGE: removes /inference/chat-completion route and updates
relevant documentation
## Test Plan
🤷
206 lines
7.9 KiB
Markdown
206 lines
7.9 KiB
Markdown
# Integration Testing Guide
|
|
|
|
Integration tests verify complete workflows across different providers using Llama Stack's record-replay system.
|
|
|
|
## Quick Start
|
|
|
|
```bash
|
|
# Run all integration tests with existing recordings
|
|
uv run --group test \
|
|
pytest -sv tests/integration/ --stack-config=starter
|
|
```
|
|
|
|
## Configuration Options
|
|
|
|
You can see all options with:
|
|
```bash
|
|
cd tests/integration
|
|
|
|
# this will show a long list of options, look for "Custom options:"
|
|
pytest --help
|
|
```
|
|
|
|
Here are the most important options:
|
|
- `--stack-config`: specify the stack config to use. You have four ways to point to a stack:
|
|
- **`server:<config>`** - automatically start a server with the given config (e.g., `server:starter`). This provides one-step testing by auto-starting the server if the port is available, or reusing an existing server if already running.
|
|
- **`server:<config>:<port>`** - same as above but with a custom port (e.g., `server:starter:8322`)
|
|
- a URL which points to a Llama Stack distribution server
|
|
- a distribution name (e.g., `starter`) or a path to a `run.yaml` file
|
|
- a comma-separated list of api=provider pairs, e.g. `inference=ollama,safety=llama-guard,agents=meta-reference`. This is most useful for testing a single API surface.
|
|
- `--env`: set environment variables, e.g. --env KEY=value. this is a utility option to set environment variables required by various providers.
|
|
|
|
Model parameters can be influenced by the following options:
|
|
- `--text-model`: comma-separated list of text models.
|
|
- `--vision-model`: comma-separated list of vision models.
|
|
- `--embedding-model`: comma-separated list of embedding models.
|
|
- `--safety-shield`: comma-separated list of safety shields.
|
|
- `--judge-model`: comma-separated list of judge models.
|
|
- `--embedding-dimension`: output dimensionality of the embedding model to use for testing. Default: 384
|
|
|
|
Each of these are comma-separated lists and can be used to generate multiple parameter combinations. Note that tests will be skipped
|
|
if no model is specified.
|
|
|
|
### Suites and Setups
|
|
|
|
- `--suite`: single named suite that narrows which tests are collected.
|
|
- Available suites:
|
|
- `base`: collects most tests (excludes responses and post_training)
|
|
- `responses`: collects tests under `tests/integration/responses` (needs strong tool-calling models)
|
|
- `vision`: collects only `tests/integration/inference/test_vision_inference.py`
|
|
- `--setup`: global configuration that can be used with any suite. Setups prefill model/env defaults; explicit CLI flags always win.
|
|
- Available setups:
|
|
- `ollama`: Local Ollama provider with lightweight models (sets OLLAMA_URL, uses llama3.2:3b-instruct-fp16)
|
|
- `vllm`: VLLM provider for efficient local inference (sets VLLM_URL, uses Llama-3.2-1B-Instruct)
|
|
- `gpt`: OpenAI GPT models for high-quality responses (uses gpt-4o)
|
|
- `claude`: Anthropic Claude models for high-quality responses (uses claude-3-5-sonnet)
|
|
|
|
Examples
|
|
|
|
```bash
|
|
# Fast responses run with a strong tool-calling model
|
|
pytest -s -v tests/integration --stack-config=server:starter --suite=responses --setup=gpt
|
|
|
|
# Fast single-file vision run with Ollama defaults
|
|
pytest -s -v tests/integration --stack-config=server:starter --suite=vision --setup=ollama
|
|
|
|
# Base suite with VLLM for performance
|
|
pytest -s -v tests/integration --stack-config=server:starter --suite=base --setup=vllm
|
|
|
|
# Override a default from setup
|
|
pytest -s -v tests/integration --stack-config=server:starter \
|
|
--suite=responses --setup=gpt --embedding-model=text-embedding-3-small
|
|
```
|
|
|
|
## Examples
|
|
|
|
### Testing against a Server
|
|
|
|
Run all text inference tests by auto-starting a server with the `starter` config:
|
|
|
|
```bash
|
|
OLLAMA_URL=http://localhost:11434 \
|
|
pytest -s -v tests/integration/inference/test_text_inference.py \
|
|
--stack-config=server:starter \
|
|
--text-model=ollama/llama3.2:3b-instruct-fp16 \
|
|
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
|
|
```
|
|
|
|
Run tests with auto-server startup on a custom port:
|
|
|
|
```bash
|
|
OLLAMA_URL=http://localhost:11434 \
|
|
pytest -s -v tests/integration/inference/ \
|
|
--stack-config=server:starter:8322 \
|
|
--text-model=ollama/llama3.2:3b-instruct-fp16 \
|
|
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
|
|
```
|
|
|
|
### Testing with Library Client
|
|
|
|
The library client constructs the Stack "in-process" instead of using a server. This is useful during the iterative development process since you don't need to constantly start and stop servers.
|
|
|
|
|
|
You can do this by simply using `--stack-config=starter` instead of `--stack-config=server:starter`.
|
|
|
|
|
|
### Using ad-hoc distributions
|
|
|
|
Sometimes, you may want to make up a distribution on the fly. This is useful for testing a single provider or a single API or a small combination of providers. You can do so by specifying a comma-separated list of api=provider pairs to the `--stack-config` option, e.g. `inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference`.
|
|
|
|
```bash
|
|
pytest -s -v tests/integration/inference/ \
|
|
--stack-config=inference=remote::ollama,safety=inline::llama-guard,agents=inline::meta-reference \
|
|
--text-model=$TEXT_MODELS \
|
|
--vision-model=$VISION_MODELS \
|
|
--embedding-model=$EMBEDDING_MODELS
|
|
```
|
|
|
|
Another example: Running Vector IO tests for embedding models:
|
|
|
|
```bash
|
|
pytest -s -v tests/integration/vector_io/ \
|
|
--stack-config=inference=inline::sentence-transformers,vector_io=inline::sqlite-vec \
|
|
--embedding-model=sentence-transformers/all-MiniLM-L6-v2
|
|
```
|
|
|
|
## Recording Modes
|
|
|
|
The testing system supports three modes controlled by environment variables:
|
|
|
|
### REPLAY Mode (Default)
|
|
Uses cached responses instead of making API calls:
|
|
```bash
|
|
pytest tests/integration/
|
|
```
|
|
### RECORD Mode
|
|
Captures API interactions for later replay:
|
|
```bash
|
|
pytest tests/integration/inference/test_new_feature.py --inference-mode=record
|
|
```
|
|
|
|
### LIVE Mode
|
|
Tests make real API calls (but not recorded):
|
|
```bash
|
|
pytest tests/integration/ --inference-mode=live
|
|
```
|
|
|
|
By default, the recording directory is `tests/integration/recordings`. You can override this by setting the `LLAMA_STACK_TEST_RECORDING_DIR` environment variable.
|
|
|
|
## Managing Recordings
|
|
|
|
### Viewing Recordings
|
|
```bash
|
|
# See what's recorded
|
|
sqlite3 recordings/index.sqlite "SELECT endpoint, model, timestamp FROM recordings;"
|
|
|
|
# Inspect specific response
|
|
cat recordings/responses/abc123.json | jq '.'
|
|
```
|
|
|
|
### Re-recording Tests
|
|
|
|
#### Remote Re-recording (Recommended)
|
|
Use the automated workflow script for easier re-recording:
|
|
```bash
|
|
./scripts/github/schedule-record-workflow.sh --subdirs "inference,agents"
|
|
```
|
|
See the [main testing guide](../README.md#remote-re-recording-recommended) for full details.
|
|
|
|
#### Local Re-recording
|
|
```bash
|
|
# Re-record specific tests
|
|
pytest -s -v --stack-config=server:starter tests/integration/inference/test_modified.py --inference-mode=record
|
|
```
|
|
|
|
Note that when re-recording tests, you must use a Stack pointing to a server (i.e., `server:starter`). This subtlety exists because the set of tests run in server are a superset of the set of tests run in the library client.
|
|
|
|
## Writing Tests
|
|
|
|
### Basic Test Pattern
|
|
```python
|
|
def test_basic_chat_completion(llama_stack_client, text_model_id):
|
|
response = llama_stack_client.chat.completions.create(
|
|
model=text_model_id,
|
|
messages=[{"role": "user", "content": "Hello"}],
|
|
)
|
|
|
|
# Test structure, not AI output quality
|
|
assert response.choices[0].message is not None
|
|
assert isinstance(response.choices[0].message.content, str)
|
|
assert len(response.choices[0].message.content) > 0
|
|
```
|
|
|
|
### Provider-Specific Tests
|
|
```python
|
|
def test_asymmetric_embeddings(llama_stack_client, embedding_model_id):
|
|
if embedding_model_id not in MODELS_SUPPORTING_TASK_TYPE:
|
|
pytest.skip(f"Model {embedding_model_id} doesn't support task types")
|
|
|
|
query_response = llama_stack_client.inference.embeddings(
|
|
model_id=embedding_model_id,
|
|
contents=["What is machine learning?"],
|
|
task_type="query",
|
|
)
|
|
|
|
assert query_response.embeddings is not None
|
|
```
|