llama-stack-mirror/docs/source/distributions/self_hosted_distro/cerebras.md
Xi Yan d1f3b032c9
cerebras template update for memory (#792)
# What does this PR do?

- we no longer have meta-reference as memory provider, update cerebras
template


## Test Plan

```
python llama_stack/scripts/distro_codegen.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-16 16:07:53 -08:00

1.9 KiB

Cerebras Distribution

The llamastack/distribution-cerebras distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference remote::cerebras
memory inline::faiss, remote::chromadb, remote::pgvector
safety inline::llama-guard
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::memory-runtime

Environment Variables

The following environment variables can be configured:

  • LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • CEREBRAS_API_KEY: Cerebras API Key (default: ``)

Models

The following models are available by default:

  • meta-llama/Llama-3.1-8B-Instruct (llama3.1-8b)
  • meta-llama/Llama-3.3-70B-Instruct (llama-3.3-70b)

Prerequisite: API Keys

Make sure you have access to a Cerebras API Key. You can get one by visiting cloud.cerebras.ai.

Running Llama Stack with Cerebras

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ./run.yaml:/root/my-run.yaml \
  llamastack/distribution-cerebras \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env CEREBRAS_API_KEY=$CEREBRAS_API_KEY

Via Conda

llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
  --port 5001 \
  --env CEREBRAS_API_KEY=$CEREBRAS_API_KEY