mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-12-22 20:40:00 +00:00
1.6 KiB
1.6 KiB
inline::faiss
Description
Faiss is an inline vector database provider for Llama Stack. It allows you to store and query vectors directly in memory. That means you'll get fast and efficient vector retrieval.
Features
- Lightweight and easy to use
- Fully integrated with Llama Stack
- GPU support
Usage
To use Faiss in your Llama Stack project, follow these steps:
- Install the necessary dependencies.
- Configure your Llama Stack project to use Faiss.
- Start storing and querying vectors.
Installation
You can install Faiss using pip:
pip install faiss-cpu
Documentation
See Faiss' documentation or the Faiss Wiki for more details about Faiss in general.
Configuration
| Field | Type | Required | Default | Description |
|---|---|---|---|---|
kvstore |
utils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfig |
No | sqlite | |
embedding_model |
str | None |
No | Optional default embedding model for this provider. If not specified, will use system default. | |
embedding_dimension |
int | None |
No | Optional embedding dimension override. Only needed for models with variable dimensions (e.g., Matryoshka embeddings). If not specified, will auto-lookup from model registry. |
Sample Configuration
kvstore:
type: sqlite
db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/faiss_store.db