mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-06-27 18:50:41 +00:00
Lint check in main branch is failing. This fixes the lint check after we moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We need to move to a `ruff.toml` file as well as fixing and ignoring some additional checks. Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
133 lines
3.7 KiB
Python
133 lines
3.7 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
import os
|
|
|
|
import pytest
|
|
import pytest_asyncio
|
|
|
|
from llama_stack.apis.models import ModelInput, ModelType
|
|
from llama_stack.apis.tools import ToolGroupInput
|
|
from llama_stack.distribution.datatypes import Api, Provider
|
|
from llama_stack.providers.tests.resolver import construct_stack_for_test
|
|
|
|
from ..conftest import ProviderFixture
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def tool_runtime_memory_and_search() -> ProviderFixture:
|
|
return ProviderFixture(
|
|
providers=[
|
|
Provider(
|
|
provider_id="rag-runtime",
|
|
provider_type="inline::rag-runtime",
|
|
config={},
|
|
),
|
|
Provider(
|
|
provider_id="tavily-search",
|
|
provider_type="remote::tavily-search",
|
|
config={
|
|
"api_key": os.environ["TAVILY_SEARCH_API_KEY"],
|
|
},
|
|
),
|
|
Provider(
|
|
provider_id="wolfram-alpha",
|
|
provider_type="remote::wolfram-alpha",
|
|
config={
|
|
"api_key": os.environ["WOLFRAM_ALPHA_API_KEY"],
|
|
},
|
|
),
|
|
],
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def tool_group_input_memory() -> ToolGroupInput:
|
|
return ToolGroupInput(
|
|
toolgroup_id="builtin::rag",
|
|
provider_id="rag-runtime",
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def tool_group_input_tavily_search() -> ToolGroupInput:
|
|
return ToolGroupInput(
|
|
toolgroup_id="builtin::web_search",
|
|
provider_id="tavily-search",
|
|
)
|
|
|
|
|
|
@pytest.fixture(scope="session")
|
|
def tool_group_input_wolfram_alpha() -> ToolGroupInput:
|
|
return ToolGroupInput(
|
|
toolgroup_id="builtin::wolfram_alpha",
|
|
provider_id="wolfram-alpha",
|
|
)
|
|
|
|
|
|
TOOL_RUNTIME_FIXTURES = ["memory_and_search"]
|
|
|
|
|
|
@pytest_asyncio.fixture(scope="session")
|
|
async def tools_stack(
|
|
request,
|
|
inference_model,
|
|
tool_group_input_memory,
|
|
tool_group_input_tavily_search,
|
|
tool_group_input_wolfram_alpha,
|
|
):
|
|
fixture_dict = request.param
|
|
|
|
providers = {}
|
|
provider_data = {}
|
|
for key in ["inference", "vector_io", "tool_runtime"]:
|
|
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
|
|
providers[key] = fixture.providers
|
|
if key == "inference":
|
|
providers[key].append(
|
|
Provider(
|
|
provider_id="tools_memory_provider",
|
|
provider_type="inline::sentence-transformers",
|
|
config={},
|
|
)
|
|
)
|
|
if fixture.provider_data:
|
|
provider_data.update(fixture.provider_data)
|
|
inference_models = inference_model if isinstance(inference_model, list) else [inference_model]
|
|
models = [
|
|
ModelInput(
|
|
model_id=model,
|
|
model_type=ModelType.llm,
|
|
provider_id=providers["inference"][0].provider_id,
|
|
)
|
|
for model in inference_models
|
|
]
|
|
models.append(
|
|
ModelInput(
|
|
model_id="all-MiniLM-L6-v2",
|
|
model_type=ModelType.embedding,
|
|
provider_id="tools_memory_provider",
|
|
metadata={"embedding_dimension": 384},
|
|
)
|
|
)
|
|
|
|
test_stack = await construct_stack_for_test(
|
|
[
|
|
Api.tool_groups,
|
|
Api.inference,
|
|
Api.vector_io,
|
|
Api.tool_runtime,
|
|
],
|
|
providers,
|
|
provider_data,
|
|
models=models,
|
|
tool_groups=[
|
|
tool_group_input_tavily_search,
|
|
tool_group_input_wolfram_alpha,
|
|
tool_group_input_memory,
|
|
],
|
|
)
|
|
return test_stack
|