mirror of
https://github.com/meta-llama/llama-stack.git
synced 2025-10-18 15:27:16 +00:00
# What does this PR do? remove telemetry as a providable API from the codebase. This includes removing it from generated distributions but also the provider registry, the router, etc since `setup_logger` is tied pretty strictly to `Api.telemetry` being in impls we still need an "instantiated provider" in our implementations. However it should not be auto-routed or provided. So in validate_and_prepare_providers (called from resolve_impls) I made it so that if run_config.telemetry.enabled, we set up the meta-reference "provider" internally to be used so that log_event will work when called. This is the neatest way I think we can remove telemetry from the provider configs but also not need to rip apart the whole "telemetry is a provider" logic just yet, but we can do it internally later without disrupting users. so telemetry is removed from the registry such that if a user puts `telemetry:` as an API in their build/run config it will err out, but can still be used by us internally as we go through this transition. relates to #3806 Signed-off-by: Charlie Doern <cdoern@redhat.com>
3.2 KiB
3.2 KiB
orphan |
---|
true |
Meta Reference GPU Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-meta-reference-gpu
distribution consists of the following provider configurations:
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | inline::meta-reference |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
tool_runtime | remote::brave-search , remote::tavily-search , inline::rag-runtime , remote::model-context-protocol |
vector_io | inline::faiss , remote::chromadb , remote::pgvector |
Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.
Environment Variables
The following environment variables can be configured:
LLAMA_STACK_PORT
: Port for the Llama Stack distribution server (default:8321
)INFERENCE_MODEL
: Inference model loaded into the Meta Reference server (default:meta-llama/Llama-3.2-3B-Instruct
)INFERENCE_CHECKPOINT_DIR
: Directory containing the Meta Reference model checkpoint (default:null
)SAFETY_MODEL
: Name of the safety (Llama-Guard) model to use (default:meta-llama/Llama-Guard-3-1B
)SAFETY_CHECKPOINT_DIR
: Directory containing the Llama-Guard model checkpoint (default:null
)
Prerequisite: Downloading Models
Please check that you have llama model checkpoints downloaded in ~/.llama
before proceeding. See installation guide here to download the models using the Hugging Face CLI.
## Running the Distribution
You can do this via venv or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
--gpu all \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-e INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
llamastack/distribution-meta-reference-gpu \
--port $LLAMA_STACK_PORT
If you are using Llama Stack Safety / Shield APIs, use:
docker run \
-it \
--pull always \
--gpu all \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-e INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
-e SAFETY_MODEL=meta-llama/Llama-Guard-3-1B \
llamastack/distribution-meta-reference-gpu \
--port $LLAMA_STACK_PORT
Via venv
Make sure you have done uv pip install llama-stack
and have the Llama Stack CLI available.
llama stack build --distro meta-reference-gpu --image-type venv
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
llama stack run distributions/meta-reference-gpu/run.yaml \
--port 8321
If you are using Llama Stack Safety / Shield APIs, use:
INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
SAFETY_MODEL=meta-llama/Llama-Guard-3-1B \
llama stack run distributions/meta-reference-gpu/run-with-safety.yaml \
--port 8321