llama-stack-mirror/docs/source/providers/vector_io/remote_milvus.md
Varsha 4ae5656c2f
Some checks failed
SqlStore Integration Tests / test-postgres (3.13) (push) Failing after 7s
Integration Tests / discover-tests (push) Successful in 8s
Integration Auth Tests / test-matrix (oauth2_token) (push) Failing after 10s
Test Llama Stack Build / build-custom-container-distribution (push) Failing after 6s
Test Llama Stack Build / build-ubi9-container-distribution (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, remote::chromadb) (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, remote::chromadb) (push) Failing after 9s
Vector IO Integration Tests / test-matrix (3.12, remote::pgvector) (push) Failing after 10s
Vector IO Integration Tests / test-matrix (3.13, remote::pgvector) (push) Failing after 8s
Test Llama Stack Build / generate-matrix (push) Successful in 8s
Python Package Build Test / build (3.13) (push) Failing after 6s
Unit Tests / unit-tests (3.12) (push) Failing after 6s
Unit Tests / unit-tests (3.13) (push) Failing after 6s
Vector IO Integration Tests / test-matrix (3.12, inline::milvus) (push) Failing after 13s
Vector IO Integration Tests / test-matrix (3.13, inline::milvus) (push) Failing after 12s
Vector IO Integration Tests / test-matrix (3.12, inline::sqlite-vec) (push) Failing after 15s
Test External Providers / test-external-providers (venv) (push) Failing after 9s
Test Llama Stack Build / build-single-provider (push) Failing after 11s
Vector IO Integration Tests / test-matrix (3.13, inline::sqlite-vec) (push) Failing after 14s
SqlStore Integration Tests / test-postgres (3.12) (push) Failing after 19s
Integration Tests / test-matrix (push) Failing after 8s
Test Llama Stack Build / build (push) Failing after 5s
Python Package Build Test / build (3.12) (push) Failing after 51s
Vector IO Integration Tests / test-matrix (3.13, inline::faiss) (push) Failing after 55s
Vector IO Integration Tests / test-matrix (3.12, inline::faiss) (push) Failing after 57s
Update ReadTheDocs / update-readthedocs (push) Failing after 50s
Pre-commit / pre-commit (push) Successful in 2m9s
feat: Implement keyword search in milvus (#2231)
# What does this PR do?
This PR adds the keyword search implementation for Milvus. Along with
the implementation for remote Milvus, the tests require us to start a
Milvus containers locally.

In order to verify the implementation, run:
```
pytest tests/unit/providers/vector_io/remote/test_milvus.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```

You can also test the changes using the below script:
```
#!/usr/bin/env python3
import asyncio
import os
import uuid
from typing import List

from llama_stack_client import (
    Agent, 
    AgentEventLogger, 
    LlamaStackClient, 
    RAGDocument
)


class MilvusRAGDemo:
    def __init__(self, base_url: str = "http://localhost:8321/"):
        self.client = LlamaStackClient(base_url=base_url)
        self.vector_db_id = f"milvus_rag_demo_{uuid.uuid4().hex[:8]}"
        self.model_id = None
        self.embedding_model_id = None
        self.embedding_dimension = None
        
    def setup_models(self):
        """Get available models and select appropriate ones for LLM and embeddings."""
        models = self.client.models.list()
    
        # Select embedding model
        embedding_models = [m for m in models if m.model_type == "embedding"]
        if not embedding_models:
            raise ValueError("No embedding models found")
        self.embedding_model_id = embedding_models[0].identifier
        self.embedding_dimension = embedding_models[0].metadata["embedding_dimension"]
        
    def register_vector_db(self):
        print(f"Registering Milvus vector database: {self.vector_db_id}")
        
        response = self.client.vector_dbs.register(
            vector_db_id=self.vector_db_id,
            embedding_model=self.embedding_model_id,
            embedding_dimension=self.embedding_dimension,
            provider_id="milvus-remote",  # Use remote Milvus
        )
        print(f"Vector database registered successfully")
        return response
        
    def insert_documents(self):
        """Insert sample documents into the vector database."""
        print("\nInserting sample documents...")
        
        # Sample documents about different topics
        documents = [
            RAGDocument(
                document_id="ai_ml_basics",
                content="""
                Artificial Intelligence (AI) and Machine Learning (ML) are transforming the world.
                AI refers to the simulation of human intelligence in machines, while ML is a subset
                of AI that enables computers to learn and improve from experience without being
                explicitly programmed. Deep learning, a subset of ML, uses neural networks with
                multiple layers to process complex patterns in data.
                
                Key concepts in AI/ML include:
                - Supervised Learning: Training with labeled data
                - Unsupervised Learning: Finding patterns in unlabeled data
                - Reinforcement Learning: Learning through trial and error
                - Neural Networks: Computing systems inspired by biological brains
                """,
                mime_type="text/plain",
                metadata={"topic": "technology", "category": "ai_ml"},
            ),
        ]
        
        # Insert documents with chunking
        self.client.tool_runtime.rag_tool.insert(
            documents=documents,
            vector_db_id=self.vector_db_id,
            chunk_size_in_tokens=200,  # Smaller chunks for better granularity
        )
        print(f"Inserted {len(documents)} documents with chunking")
                
    def test_keyword_search(self):
        """Test keyword-based search using BM25."""
        
        queries = [
            "neural networks",
            "Python frameworks",
            "data cleaning",
        ]
        
        for query in queries:
            response = self.client.vector_io.query(
                vector_db_id=self.vector_db_id,
                query=query,
                params={
                    "mode": "keyword",  # Keyword search
                    "max_chunks": 3,
                    "score_threshold": 0.0,
                }
            )
            
            for i, (chunk, score) in enumerate(zip(response.chunks, response.scores)):
                print(f"  {i+1}. Score: {score:.4f}")
                print(f"     Content: {chunk.content[:100]}...")
                print(f"     Metadata: {chunk.metadata}")    

                
    def run_demo(self):       
        try:
            self.setup_models()
            self.register_vector_db()
            self.insert_documents()
            self.test_keyword_search()
        except Exception as e:
            print(f"Error during demo: {e}")
            raise


def main():
    """Main function to run the demo."""
    # Check if Llama Stack server is running
    demo = MilvusRAGDemo()    
    try:
        demo.run_demo()
    except Exception as e:
        print(f"Demo failed: {e}")

if __name__ == "__main__":
    main()
```

[//]: # (## Documentation)

---------

Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
2025-07-14 19:39:55 -04:00

4.2 KiB

remote::milvus

Description

Milvus is an inline and remote vector database provider for Llama Stack. It allows you to store and query vectors directly within a Milvus database. That means you're not limited to storing vectors in memory or in a separate service.

Features

  • Easy to use
  • Fully integrated with Llama Stack

Usage

To use Milvus in your Llama Stack project, follow these steps:

  1. Install the necessary dependencies.
  2. Configure your Llama Stack project to use Milvus.
  3. Start storing and querying vectors.

Installation

You can install Milvus using pymilvus:

pip install pymilvus

Configuration

In Llama Stack, Milvus can be configured in two ways:

  • Inline (Local) Configuration - Uses Milvus-Lite for local storage
  • Remote Configuration - Connects to a remote Milvus server

Inline (Local) Configuration

The simplest method is local configuration, which requires setting db_path, a path for locally storing Milvus-Lite files:

vector_io:
  - provider_id: milvus
    provider_type: inline::milvus
    config:
      db_path: ~/.llama/distributions/together/milvus_store.db

Remote Configuration

Remote configuration is suitable for larger data storage requirements:

Standard Remote Connection

vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: "http://<host>:<port>"
      token: "<user>:<password>"

TLS-Enabled Remote Connection (One-way TLS)

For connections to Milvus instances with one-way TLS enabled:

vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: "https://<host>:<port>"
      token: "<user>:<password>"
      secure: True
      server_pem_path: "/path/to/server.pem"

Mutual TLS (mTLS) Remote Connection

For connections to Milvus instances with mutual TLS (mTLS) enabled:

vector_io:
  - provider_id: milvus
    provider_type: remote::milvus
    config:
      uri: "https://<host>:<port>"
      token: "<user>:<password>"
      secure: True
      ca_pem_path: "/path/to/ca.pem"
      client_pem_path: "/path/to/client.pem"
      client_key_path: "/path/to/client.key"

Key Parameters for TLS Configuration

  • secure: Enables TLS encryption when set to true. Defaults to false.
  • server_pem_path: Path to the server certificate for verifying the server's identity (used in one-way TLS).
  • ca_pem_path: Path to the Certificate Authority (CA) certificate for validating the server certificate (required in mTLS).
  • client_pem_path: Path to the client certificate file (required for mTLS).
  • client_key_path: Path to the client private key file (required for mTLS).

Documentation

See the Milvus documentation for more details about Milvus in general.

For more details on TLS configuration, refer to the TLS setup guide.

Configuration

Field Type Required Default Description
uri <class 'str'> No PydanticUndefined The URI of the Milvus server
token str | None No PydanticUndefined The token of the Milvus server
consistency_level <class 'str'> No Strong The consistency level of the Milvus server
kvstore utils.kvstore.config.RedisKVStoreConfig | utils.kvstore.config.SqliteKVStoreConfig | utils.kvstore.config.PostgresKVStoreConfig | utils.kvstore.config.MongoDBKVStoreConfig No sqlite Config for KV store backend
config dict No {} This configuration allows additional fields to be passed through to the underlying Milvus client. See the Milvus documentation for more details about Milvus in general.

Note

: This configuration class accepts additional fields beyond those listed above. You can pass any additional configuration options that will be forwarded to the underlying provider.

Sample Configuration

uri: ${env.MILVUS_ENDPOINT}
token: ${env.MILVUS_TOKEN}
kvstore:
  type: sqlite
  db_path: ${env.SQLITE_STORE_DIR:=~/.llama/dummy}/milvus_remote_registry.db