llama-stack-mirror/docs/source/distributions/self_hosted_distro/remote-vllm.md
raghotham ff182ff6de
rename LLAMASTACK_PORT to LLAMA_STACK_PORT for consistency with other env vars (#744)
# What does this PR do?

Rename environment var for consistency

## Test Plan

No regressions

## Sources

## Before submitting

- [X] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [X] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
2025-01-10 11:09:49 -08:00

4.8 KiB

orphan
true

Remote vLLM Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-remote-vllm distribution consists of the following provider configurations:

API Provider(s)
agents inline::meta-reference
inference remote::vllm
memory inline::faiss, remote::chromadb, remote::pgvector
safety inline::llama-guard
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::memory-runtime

You can use this distribution if you have GPUs and want to run an independent vLLM server container for running inference.

Environment Variables

The following environment variables can be configured:

  • LLAMA_STACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • INFERENCE_MODEL: Inference model loaded into the vLLM server (default: meta-llama/Llama-3.2-3B-Instruct)
  • VLLM_URL: URL of the vLLM server with the main inference model (default: http://host.docker.internal:5100/v1)
  • MAX_TOKENS: Maximum number of tokens for generation (default: 4096)
  • SAFETY_VLLM_URL: URL of the vLLM server with the safety model (default: http://host.docker.internal:5101/v1)
  • SAFETY_MODEL: Name of the safety (Llama-Guard) model to use (default: meta-llama/Llama-Guard-3-1B)

Setting up vLLM server

Please check the vLLM Documentation to get a vLLM endpoint. Here is a sample script to start a vLLM server locally via Docker:

export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0

docker run \
    --runtime nvidia \
    --gpus $CUDA_VISIBLE_DEVICES \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
    -p $INFERENCE_PORT:$INFERENCE_PORT \
    --ipc=host \
    vllm/vllm-openai:latest \
    --gpu-memory-utilization 0.7 \
    --model $INFERENCE_MODEL \
    --port $INFERENCE_PORT

If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a vLLM with a corresponding safety model like meta-llama/Llama-Guard-3-1B using a script like:

export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1

docker run \
    --runtime nvidia \
    --gpus $CUDA_VISIBLE_DEVICES \
    -v ~/.cache/huggingface:/root/.cache/huggingface \
    --env "HUGGING_FACE_HUB_TOKEN=$HF_TOKEN" \
    -p $SAFETY_PORT:$SAFETY_PORT \
    --ipc=host \
    vllm/vllm-openai:latest \
    --gpu-memory-utilization 0.7 \
    --model $SAFETY_MODEL \
    --port $SAFETY_PORT

Running Llama Stack

Now you are ready to run Llama Stack with vLLM as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=5001

docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ./run.yaml:/root/my-run.yaml \
  llamastack/distribution-remote-vllm \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1

If you are using Llama Stack Safety / Shield APIs, use:

export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B

docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ./run-with-safety.yaml:/root/my-run.yaml \
  llamastack/distribution-remote-vllm \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env VLLM_URL=http://host.docker.internal:$INFERENCE_PORT/v1 \
  --env SAFETY_MODEL=$SAFETY_MODEL \
  --env SAFETY_VLLM_URL=http://host.docker.internal:$SAFETY_PORT/v1

Via Conda

Make sure you have done pip install llama-stack and have the Llama Stack CLI available.

export INFERENCE_PORT=8000
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export LLAMA_STACK_PORT=5001

cd distributions/remote-vllm
llama stack build --template remote-vllm --image-type conda

llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env VLLM_URL=http://localhost:$INFERENCE_PORT/v1

If you are using Llama Stack Safety / Shield APIs, use:

export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B

llama stack run ./run-with-safety.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env VLLM_URL=http://localhost:$INFERENCE_PORT/v1 \
  --env SAFETY_MODEL=$SAFETY_MODEL \
  --env SAFETY_VLLM_URL=http://localhost:$SAFETY_PORT/v1