[llama stack ui] add native eval & inspect distro & playground pages (#541)

# What does this PR do?

New Pages Added: 

- (1) Inspect Distro
- (2) Evaluations: 
  - (a) native evaluations (including generation)
  - (b) application evaluations (no generation, scoring only)
- (3) Playground: 
  - (a) chat
  - (b) RAG  

## Test Plan

```
streamlit run app.py
```

#### Playground

https://github.com/user-attachments/assets/6ca617e8-32ca-49b2-9774-185020ff5204

#### Inspect

https://github.com/user-attachments/assets/01d52b2d-92af-4e3a-b623-a9b8ba22ba99


#### Evaluations (Generation + Scoring)

https://github.com/user-attachments/assets/345845c7-2a2b-4095-960a-9ae40f6a93cf

#### Evaluations (Scoring)

https://github.com/user-attachments/assets/6cc1659f-eba4-49ca-a0a5-7c243557b4f5


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
This commit is contained in:
Xi Yan 2024-12-04 09:47:09 -08:00 committed by GitHub
parent caf1dac114
commit 16769256b7
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
22 changed files with 1000 additions and 166 deletions

View file

@ -2,6 +2,12 @@
[!NOTE] This is a work in progress.
## Prerequisite
- Start up Llama Stack Server
```
llama stack run
```
## Running Streamlit App
```

View file

@ -3,170 +3,54 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from modules.api import LlamaStackEvaluation
from modules.utils import process_dataset
EVALUATION_API = LlamaStackEvaluation()
def main():
# Add collapsible sidebar
with st.sidebar:
# Add collapse button
if "sidebar_state" not in st.session_state:
st.session_state.sidebar_state = True
if st.session_state.sidebar_state:
st.title("Navigation")
page = st.radio(
"Select a Page",
["Application Evaluation"],
index=0,
)
else:
page = "Application Evaluation" # Default page when sidebar is collapsed
# Main content area
st.title("🦙 Llama Stack Evaluations")
if page == "Application Evaluation":
application_evaluation_page()
def application_evaluation_page():
# File uploader
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx", "xls"])
if uploaded_file is None:
st.error("No file uploaded")
return
# Process uploaded file
df = process_dataset(uploaded_file)
if df is None:
st.error("Error processing file")
return
# Display dataset information
st.success("Dataset loaded successfully!")
# Display dataframe preview
st.subheader("Dataset Preview")
st.dataframe(df)
# Select Scoring Functions to Run Evaluation On
st.subheader("Select Scoring Functions")
scoring_functions = EVALUATION_API.list_scoring_functions()
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
scoring_functions_names = list(scoring_functions.keys())
selected_scoring_functions = st.multiselect(
"Choose one or more scoring functions",
options=scoring_functions_names,
help="Choose one or more scoring functions.",
# Evaluation pages
application_evaluation_page = st.Page(
"page/evaluations/app_eval.py",
title="Evaluations (Scoring)",
icon="📊",
default=False,
)
native_evaluation_page = st.Page(
"page/evaluations/native_eval.py",
title="Evaluations (Generation + Scoring)",
icon="📊",
default=False,
)
available_models = EVALUATION_API.list_models()
available_models = [m.identifier for m in available_models]
# Playground pages
chat_page = st.Page(
"page/playground/chat.py", title="Chat", icon="💬", default=True
)
rag_page = st.Page("page/playground/rag.py", title="RAG", icon="💬", default=False)
scoring_params = {}
if selected_scoring_functions:
st.write("Selected:")
for scoring_fn_id in selected_scoring_functions:
scoring_fn = scoring_functions[scoring_fn_id]
st.write(f"- **{scoring_fn_id}**: {scoring_fn.description}")
new_params = None
if scoring_fn.params:
new_params = {}
for param_name, param_value in scoring_fn.params.to_dict().items():
if param_name == "type":
new_params[param_name] = param_value
continue
# Distribution pages
resources_page = st.Page(
"page/distribution/resources.py", title="Resources", icon="🔍", default=False
)
provider_page = st.Page(
"page/distribution/providers.py",
title="API Providers",
icon="🔍",
default=False,
)
if param_name == "judge_model":
value = st.selectbox(
f"Select **{param_name}** for {scoring_fn_id}",
options=available_models,
index=0,
key=f"{scoring_fn_id}_{param_name}",
)
new_params[param_name] = value
else:
value = st.text_area(
f"Enter value for **{param_name}** in {scoring_fn_id} in valid JSON format",
value=json.dumps(param_value, indent=2),
height=80,
)
try:
new_params[param_name] = json.loads(value)
except json.JSONDecodeError:
st.error(
f"Invalid JSON for **{param_name}** in {scoring_fn_id}"
)
st.json(new_params)
scoring_params[scoring_fn_id] = new_params
# Add run evaluation button & slider
total_rows = len(df)
num_rows = st.slider("Number of rows to evaluate", 1, total_rows, total_rows)
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = df.to_dict(orient="records")
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
score_res = EVALUATION_API.run_scoring(
r,
scoring_function_ids=selected_scoring_functions,
scoring_params=scoring_params,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for fn_id in selected_scoring_functions:
if fn_id not in output_res:
output_res[fn_id] = []
output_res[fn_id].append(score_res.results[fn_id].score_rows[0])
# Display current row results using separate containers
progress_text_container.write(
f"Expand to see current processed result ({i+1}/{len(rows)})"
)
results_container.json(
score_res.to_json(),
expanded=2,
)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
pg = st.navigation(
{
"Playground": [
chat_page,
rag_page,
application_evaluation_page,
native_evaluation_page,
],
"Inspect": [provider_page, resources_page],
},
expanded=False,
)
pg.run()
if __name__ == "__main__":

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -11,7 +11,7 @@ from typing import Optional
from llama_stack_client import LlamaStackClient
class LlamaStackEvaluation:
class LlamaStackApi:
def __init__(self):
self.client = LlamaStackClient(
base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:5000"),
@ -22,14 +22,6 @@ class LlamaStackEvaluation:
},
)
def list_scoring_functions(self):
"""List all available scoring functions"""
return self.client.scoring_functions.list()
def list_models(self):
"""List all available judge models"""
return self.client.models.list()
def run_scoring(
self, row, scoring_function_ids: list[str], scoring_params: Optional[dict]
):
@ -39,3 +31,6 @@ class LlamaStackEvaluation:
return self.client.scoring.score(
input_rows=[row], scoring_functions=scoring_params
)
llama_stack_api = LlamaStackApi()

View file

@ -4,6 +4,7 @@
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import os
import pandas as pd
@ -29,3 +30,13 @@ def process_dataset(file):
except Exception as e:
st.error(f"Error processing file: {str(e)}")
return None
def data_url_from_file(file) -> str:
file_content = file.getvalue()
base64_content = base64.b64encode(file_content).decode("utf-8")
mime_type = file.type
data_url = f"data:{mime_type};base64,{base64_content}"
return data_url

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def datasets():
st.header("Datasets")
datasets_info = {
d.identifier: d.to_dict() for d in llama_stack_api.client.datasets.list()
}
selected_dataset = st.selectbox("Select a dataset", list(datasets_info.keys()))
st.json(datasets_info[selected_dataset], expanded=True)

View file

@ -0,0 +1,22 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def eval_tasks():
# Eval Tasks Section
st.header("Eval Tasks")
eval_tasks_info = {
d.identifier: d.to_dict() for d in llama_stack_api.client.eval_tasks.list()
}
selected_eval_task = st.selectbox(
"Select an eval task", list(eval_tasks_info.keys()), key="eval_task_inspect"
)
st.json(eval_tasks_info[selected_eval_task], expanded=True)

View file

@ -0,0 +1,23 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def memory_banks():
st.header("Memory Banks")
memory_banks_info = {
m.identifier: m.to_dict() for m in llama_stack_api.client.memory_banks.list()
}
if len(memory_banks_info) > 0:
selected_memory_bank = st.selectbox(
"Select a memory bank", list(memory_banks_info.keys())
)
st.json(memory_banks_info[selected_memory_bank])
else:
st.info("No memory banks found")

View file

@ -0,0 +1,19 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def models():
# Models Section
st.header("Models")
models_info = {
m.identifier: m.to_dict() for m in llama_stack_api.client.models.list()
}
selected_model = st.selectbox("Select a model", list(models_info.keys()))
st.json(models_info[selected_model])

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def providers():
st.header("🔍 API Providers")
apis_providers_info = llama_stack_api.client.providers.list()
# selected_api = st.selectbox("Select an API", list(apis_providers_info.keys()))
for api in apis_providers_info.keys():
st.markdown(f"###### {api}")
st.dataframe([p.to_dict() for p in apis_providers_info[api]], width=500)
providers()

View file

@ -0,0 +1,52 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from page.distribution.datasets import datasets
from page.distribution.eval_tasks import eval_tasks
from page.distribution.memory_banks import memory_banks
from page.distribution.models import models
from page.distribution.scoring_functions import scoring_functions
from page.distribution.shields import shields
from streamlit_option_menu import option_menu
def resources_page():
options = [
"Models",
"Memory Banks",
"Shields",
"Scoring Functions",
"Datasets",
"Eval Tasks",
]
icons = ["magic", "memory", "shield", "file-bar-graph", "database", "list-task"]
selected_resource = option_menu(
None,
options,
icons=icons,
orientation="horizontal",
styles={
"nav-link": {
"font-size": "12px",
},
},
)
if selected_resource == "Eval Tasks":
eval_tasks()
elif selected_resource == "Memory Banks":
memory_banks()
elif selected_resource == "Datasets":
datasets()
elif selected_resource == "Models":
models()
elif selected_resource == "Scoring Functions":
scoring_functions()
elif selected_resource == "Shields":
shields()
resources_page()

View file

@ -0,0 +1,22 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def scoring_functions():
st.header("Scoring Functions")
scoring_functions_info = {
s.identifier: s.to_dict()
for s in llama_stack_api.client.scoring_functions.list()
}
selected_scoring_function = st.selectbox(
"Select a scoring function", list(scoring_functions_info.keys())
)
st.json(scoring_functions_info[selected_scoring_function], expanded=True)

View file

@ -0,0 +1,20 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
def shields():
# Shields Section
st.header("Shields")
shields_info = {
s.identifier: s.to_dict() for s in llama_stack_api.client.shields.list()
}
selected_shield = st.selectbox("Select a shield", list(shields_info.keys()))
st.json(shields_info[selected_shield])

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,148 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from modules.api import llama_stack_api
from modules.utils import process_dataset
def application_evaluation_page():
st.set_page_config(page_title="Evaluations (Scoring)", page_icon="🦙")
st.title("📊 Evaluations (Scoring)")
# File uploader
uploaded_file = st.file_uploader("Upload Dataset", type=["csv", "xlsx", "xls"])
if uploaded_file is None:
st.error("No file uploaded")
return
# Process uploaded file
df = process_dataset(uploaded_file)
if df is None:
st.error("Error processing file")
return
# Display dataset information
st.success("Dataset loaded successfully!")
# Display dataframe preview
st.subheader("Dataset Preview")
st.dataframe(df)
# Select Scoring Functions to Run Evaluation On
st.subheader("Select Scoring Functions")
scoring_functions = llama_stack_api.client.scoring_functions.list()
scoring_functions = {sf.identifier: sf for sf in scoring_functions}
scoring_functions_names = list(scoring_functions.keys())
selected_scoring_functions = st.multiselect(
"Choose one or more scoring functions",
options=scoring_functions_names,
help="Choose one or more scoring functions.",
)
available_models = llama_stack_api.client.models.list()
available_models = [m.identifier for m in available_models]
scoring_params = {}
if selected_scoring_functions:
st.write("Selected:")
for scoring_fn_id in selected_scoring_functions:
scoring_fn = scoring_functions[scoring_fn_id]
st.write(f"- **{scoring_fn_id}**: {scoring_fn.description}")
new_params = None
if scoring_fn.params:
new_params = {}
for param_name, param_value in scoring_fn.params.to_dict().items():
if param_name == "type":
new_params[param_name] = param_value
continue
if param_name == "judge_model":
value = st.selectbox(
f"Select **{param_name}** for {scoring_fn_id}",
options=available_models,
index=0,
key=f"{scoring_fn_id}_{param_name}",
)
new_params[param_name] = value
else:
value = st.text_area(
f"Enter value for **{param_name}** in {scoring_fn_id} in valid JSON format",
value=json.dumps(param_value, indent=2),
height=80,
)
try:
new_params[param_name] = json.loads(value)
except json.JSONDecodeError:
st.error(
f"Invalid JSON for **{param_name}** in {scoring_fn_id}"
)
st.json(new_params)
scoring_params[scoring_fn_id] = new_params
# Add run evaluation button & slider
total_rows = len(df)
num_rows = st.slider("Number of rows to evaluate", 1, total_rows, total_rows)
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = df.to_dict(orient="records")
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
score_res = llama_stack_api.run_scoring(
r,
scoring_function_ids=selected_scoring_functions,
scoring_params=scoring_params,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for fn_id in selected_scoring_functions:
if fn_id not in output_res:
output_res[fn_id] = []
output_res[fn_id].append(score_res.results[fn_id].score_rows[0])
# Display current row results using separate containers
progress_text_container.write(
f"Expand to see current processed result ({i+1}/{len(rows)})"
)
results_container.json(
score_res.to_json(),
expanded=2,
)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
application_evaluation_page()

View file

@ -0,0 +1,257 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import json
import pandas as pd
import streamlit as st
from modules.api import llama_stack_api
def select_eval_task_1():
# Select Eval Tasks
st.subheader("1. Choose An Eval Task")
eval_tasks = llama_stack_api.client.eval_tasks.list()
eval_tasks = {et.identifier: et for et in eval_tasks}
eval_tasks_names = list(eval_tasks.keys())
selected_eval_task = st.selectbox(
"Choose an eval task.",
options=eval_tasks_names,
help="Choose an eval task. Each eval task is parameterized by a dataset, and list of scoring functions.",
)
with st.expander("View Eval Task"):
st.json(eval_tasks[selected_eval_task], expanded=True)
st.session_state["selected_eval_task"] = selected_eval_task
st.session_state["eval_tasks"] = eval_tasks
if st.button("Confirm", key="confirm_1"):
st.session_state["selected_eval_task_1_next"] = True
def define_eval_candidate_2():
if not st.session_state.get("selected_eval_task_1_next", None):
return
st.subheader("2. Define Eval Candidate")
st.info(
"""
Define the configurations for the evaluation candidate model or agent used for generation.
Select "model" if you want to run generation with inference API, or "agent" if you want to run generation with agent API through specifying AgentConfig.
"""
)
with st.expander("Define Eval Candidate", expanded=True):
# Define Eval Candidate
candidate_type = st.radio("Candidate Type", ["model", "agent"])
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
# Sampling Parameters
st.markdown("##### Sampling Parameters")
strategy = st.selectbox(
"Strategy",
["greedy", "top_p", "top_k"],
index=0,
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=1,
help="The maximum number of tokens to generate",
)
repetition_penalty = st.slider(
"Repetition Penalty",
min_value=1.0,
max_value=2.0,
value=1.0,
step=0.1,
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
if candidate_type == "model":
eval_candidate = {
"type": "model",
"model": selected_model,
"sampling_params": {
"strategy": strategy,
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
}
elif candidate_type == "agent":
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful AI assistant.",
help="Initial instructions given to the AI to set its behavior and context",
)
tools_json = st.text_area(
"Tools Configuration (JSON)",
value=json.dumps(
[
{
"type": "brave_search",
"engine": "brave",
"api_key": "ENTER_BRAVE_API_KEY_HERE",
}
]
),
help="Enter tool configurations in JSON format. Each tool should have a name, description, and parameters.",
height=200,
)
try:
tools = json.loads(tools_json)
except json.JSONDecodeError:
st.error("Invalid JSON format for tools configuration")
tools = []
eval_candidate = {
"type": "agent",
"config": {
"model": selected_model,
"instructions": system_prompt,
"tools": tools,
"tool_choice": "auto",
"tool_prompt_format": "json",
"input_shields": [],
"output_shields": [],
"enable_session_persistence": False,
},
}
st.session_state["eval_candidate"] = eval_candidate
if st.button("Confirm", key="confirm_2"):
st.session_state["selected_eval_candidate_2_next"] = True
def run_evaluation_3():
if not st.session_state.get("selected_eval_candidate_2_next", None):
return
st.subheader("3. Run Evaluation")
# Add info box to explain configurations being used
st.info(
"""
Review the configurations that will be used for this evaluation run, make any necessary changes, and then click the "Run Evaluation" button.
"""
)
selected_eval_task = st.session_state["selected_eval_task"]
eval_tasks = st.session_state["eval_tasks"]
eval_candidate = st.session_state["eval_candidate"]
dataset_id = eval_tasks[selected_eval_task].dataset_id
rows = llama_stack_api.client.datasetio.get_rows_paginated(
dataset_id=dataset_id,
rows_in_page=-1,
)
total_rows = len(rows.rows)
# Add number of examples control
num_rows = st.number_input(
"Number of Examples to Evaluate",
min_value=1,
max_value=total_rows,
value=5,
help="Number of examples from the dataset to evaluate. ",
)
eval_task_config = {
"type": "benchmark",
"eval_candidate": eval_candidate,
"scoring_params": {},
}
with st.expander("View Evaluation Task", expanded=True):
st.json(eval_tasks[selected_eval_task], expanded=True)
with st.expander("View Evaluation Task Configuration", expanded=True):
st.json(eval_task_config, expanded=True)
# Add run button and handle evaluation
if st.button("Run Evaluation"):
progress_text = "Running evaluation..."
progress_bar = st.progress(0, text=progress_text)
rows = rows.rows
if num_rows < total_rows:
rows = rows[:num_rows]
# Create separate containers for progress text and results
progress_text_container = st.empty()
results_container = st.empty()
output_res = {}
for i, r in enumerate(rows):
# Update progress
progress = i / len(rows)
progress_bar.progress(progress, text=progress_text)
# Run evaluation for current row
eval_res = llama_stack_api.client.eval.evaluate_rows(
task_id=selected_eval_task,
input_rows=[r],
scoring_functions=eval_tasks[selected_eval_task].scoring_functions,
task_config=eval_task_config,
)
for k in r.keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(r[k])
for k in eval_res.generations[0].keys():
if k not in output_res:
output_res[k] = []
output_res[k].append(eval_res.generations[0][k])
for scoring_fn in eval_tasks[selected_eval_task].scoring_functions:
if scoring_fn not in output_res:
output_res[scoring_fn] = []
output_res[scoring_fn].append(eval_res.scores[scoring_fn].score_rows[0])
progress_text_container.write(
f"Expand to see current processed result ({i+1}/{len(rows)})"
)
results_container.json(eval_res, expanded=2)
progress_bar.progress(1.0, text="Evaluation complete!")
# Display results in dataframe
if output_res:
output_df = pd.DataFrame(output_res)
st.subheader("Evaluation Results")
st.dataframe(output_df)
def native_evaluation_page():
st.set_page_config(page_title="Evaluations (Generation + Scoring)", page_icon="🦙")
st.title("📊 Evaluations (Generation + Scoring)")
select_eval_task_1()
define_eval_candidate_2()
run_evaluation_3()
native_evaluation_page()

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,123 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from modules.api import llama_stack_api
# Sidebar configurations
with st.sidebar:
st.header("Configuration")
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
max_tokens = st.slider(
"Max Tokens",
min_value=0,
max_value=4096,
value=512,
step=1,
help="The maximum number of tokens to generate",
)
repetition_penalty = st.slider(
"Repetition Penalty",
min_value=1.0,
max_value=2.0,
value=1.0,
step=0.1,
help="Controls the likelihood for generating the same word or phrase multiple times in the same sentence or paragraph. 1 implies no penalty, 2 will strongly discourage model to repeat words or phrases.",
)
stream = st.checkbox("Stream", value=True)
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful AI assistant.",
help="Initial instructions given to the AI to set its behavior and context",
)
# Add clear chat button to sidebar
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Main chat interface
st.title("🦙 Chat")
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
# Chat input
if prompt := st.chat_input("Example: What is Llama Stack?"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
# Display assistant response
with st.chat_message("assistant"):
message_placeholder = st.empty()
full_response = ""
response = llama_stack_api.client.inference.chat_completion(
messages=[
{"role": "system", "content": system_prompt},
{"role": "user", "content": prompt},
],
model_id=selected_model,
stream=stream,
sampling_params={
"temperature": temperature,
"top_p": top_p,
"max_tokens": max_tokens,
"repetition_penalty": repetition_penalty,
},
)
if stream:
for chunk in response:
if chunk.event.event_type == "progress":
full_response += chunk.event.delta
message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response)
else:
full_response = response
message_placeholder.markdown(full_response.completion_message.content)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)

View file

@ -0,0 +1,188 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types.memory_insert_params import Document
from modules.api import llama_stack_api
from modules.utils import data_url_from_file
def rag_chat_page():
st.title("🦙 RAG")
with st.sidebar:
# File/Directory Upload Section
st.subheader("Upload Documents")
uploaded_files = st.file_uploader(
"Upload file(s) or directory",
accept_multiple_files=True,
type=["txt", "pdf", "doc", "docx"], # Add more file types as needed
)
# Process uploaded files
if uploaded_files:
st.success(f"Successfully uploaded {len(uploaded_files)} files")
# Add memory bank name input field
memory_bank_name = st.text_input(
"Memory Bank Name",
value="rag_bank",
help="Enter a unique identifier for this memory bank",
)
if st.button("Create Memory Bank"):
documents = [
Document(
document_id=uploaded_file.name,
content=data_url_from_file(uploaded_file),
)
for i, uploaded_file in enumerate(uploaded_files)
]
providers = llama_stack_api.client.providers.list()
llama_stack_api.client.memory_banks.register(
memory_bank_id=memory_bank_name, # Use the user-provided name
params={
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
provider_id=providers["memory"][0].provider_id,
)
# insert documents using the custom bank name
llama_stack_api.client.memory.insert(
bank_id=memory_bank_name, # Use the user-provided name
documents=documents,
)
st.success("Memory bank created successfully!")
st.subheader("Configure Agent")
# select memory banks
memory_banks = llama_stack_api.client.memory_banks.list()
memory_banks = [bank.identifier for bank in memory_banks]
selected_memory_banks = st.multiselect(
"Select Memory Banks",
memory_banks,
)
memory_bank_configs = [
{"bank_id": bank_id, "type": "vector"} for bank_id in selected_memory_banks
]
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful assistant. ",
help="Initial instructions given to the AI to set its behavior and context",
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
# Add clear chat button to sidebar
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Chat Interface
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
selected_model = llama_stack_api.client.models.list()[0].identifier
agent_config = AgentConfig(
model=selected_model,
instructions=system_prompt,
sampling_params={
"strategy": "greedy",
"temperature": temperature,
"top_p": top_p,
},
tools=[
{
"type": "memory",
"memory_bank_configs": memory_bank_configs,
"query_generator_config": {"type": "default", "sep": " "},
"max_tokens_in_context": 4096,
"max_chunks": 10,
}
],
tool_choice="auto",
tool_prompt_format="json",
input_shields=[],
output_shields=[],
enable_session_persistence=False,
)
agent = Agent(llama_stack_api.client, agent_config)
session_id = agent.create_session("rag-session")
# Chat input
if prompt := st.chat_input("Ask a question about your documents"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Display assistant response
with st.chat_message("assistant"):
retrieval_message_placeholder = st.empty()
message_placeholder = st.empty()
full_response = ""
retrieval_response = ""
for log in EventLogger().log(response):
log.print()
if log.role == "memory_retrieval":
retrieval_response += log.content.replace("====", "").strip()
retrieval_message_placeholder.info(retrieval_response)
else:
full_response += log.content
message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
rag_chat_page()

View file

@ -1,3 +1,4 @@
streamlit
pandas
llama-stack-client>=0.0.55
streamlit-option-menu

View file

@ -5,7 +5,7 @@
# the root directory of this source tree.
from llama_stack.apis.common.type_system import NumberType
from llama_stack.apis.scoring_functions import ScoringFn
from llama_stack.apis.scoring_functions import LLMAsJudgeScoringFnParams, ScoringFn
llm_as_judge_base = ScoringFn(
@ -14,4 +14,8 @@ llm_as_judge_base = ScoringFn(
return_type=NumberType(),
provider_id="llm-as-judge",
provider_resource_id="llm-as-judge-base",
params=LLMAsJudgeScoringFnParams(
judge_model="meta-llama/Llama-3.1-405B-Instruct",
prompt_template="Enter custom LLM as Judge Prompt Template",
),
)