llama-stack/llama_stack/distribution/ui/page/playground/rag.py
Xi Yan 16769256b7
[llama stack ui] add native eval & inspect distro & playground pages (#541)
# What does this PR do?

New Pages Added: 

- (1) Inspect Distro
- (2) Evaluations: 
  - (a) native evaluations (including generation)
  - (b) application evaluations (no generation, scoring only)
- (3) Playground: 
  - (a) chat
  - (b) RAG  

## Test Plan

```
streamlit run app.py
```

#### Playground

https://github.com/user-attachments/assets/6ca617e8-32ca-49b2-9774-185020ff5204

#### Inspect

https://github.com/user-attachments/assets/01d52b2d-92af-4e3a-b623-a9b8ba22ba99


#### Evaluations (Generation + Scoring)

https://github.com/user-attachments/assets/345845c7-2a2b-4095-960a-9ae40f6a93cf

#### Evaluations (Scoring)

https://github.com/user-attachments/assets/6cc1659f-eba4-49ca-a0a5-7c243557b4f5


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-04 09:47:09 -08:00

188 lines
6.5 KiB
Python

# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import streamlit as st
from llama_stack_client.lib.agents.agent import Agent
from llama_stack_client.lib.agents.event_logger import EventLogger
from llama_stack_client.types.agent_create_params import AgentConfig
from llama_stack_client.types.memory_insert_params import Document
from modules.api import llama_stack_api
from modules.utils import data_url_from_file
def rag_chat_page():
st.title("🦙 RAG")
with st.sidebar:
# File/Directory Upload Section
st.subheader("Upload Documents")
uploaded_files = st.file_uploader(
"Upload file(s) or directory",
accept_multiple_files=True,
type=["txt", "pdf", "doc", "docx"], # Add more file types as needed
)
# Process uploaded files
if uploaded_files:
st.success(f"Successfully uploaded {len(uploaded_files)} files")
# Add memory bank name input field
memory_bank_name = st.text_input(
"Memory Bank Name",
value="rag_bank",
help="Enter a unique identifier for this memory bank",
)
if st.button("Create Memory Bank"):
documents = [
Document(
document_id=uploaded_file.name,
content=data_url_from_file(uploaded_file),
)
for i, uploaded_file in enumerate(uploaded_files)
]
providers = llama_stack_api.client.providers.list()
llama_stack_api.client.memory_banks.register(
memory_bank_id=memory_bank_name, # Use the user-provided name
params={
"embedding_model": "all-MiniLM-L6-v2",
"chunk_size_in_tokens": 512,
"overlap_size_in_tokens": 64,
},
provider_id=providers["memory"][0].provider_id,
)
# insert documents using the custom bank name
llama_stack_api.client.memory.insert(
bank_id=memory_bank_name, # Use the user-provided name
documents=documents,
)
st.success("Memory bank created successfully!")
st.subheader("Configure Agent")
# select memory banks
memory_banks = llama_stack_api.client.memory_banks.list()
memory_banks = [bank.identifier for bank in memory_banks]
selected_memory_banks = st.multiselect(
"Select Memory Banks",
memory_banks,
)
memory_bank_configs = [
{"bank_id": bank_id, "type": "vector"} for bank_id in selected_memory_banks
]
available_models = llama_stack_api.client.models.list()
available_models = [model.identifier for model in available_models]
selected_model = st.selectbox(
"Choose a model",
available_models,
index=0,
)
system_prompt = st.text_area(
"System Prompt",
value="You are a helpful assistant. ",
help="Initial instructions given to the AI to set its behavior and context",
)
temperature = st.slider(
"Temperature",
min_value=0.0,
max_value=1.0,
value=0.0,
step=0.1,
help="Controls the randomness of the response. Higher values make the output more creative and unexpected, lower values make it more conservative and predictable",
)
top_p = st.slider(
"Top P",
min_value=0.0,
max_value=1.0,
value=0.95,
step=0.1,
)
# Add clear chat button to sidebar
if st.button("Clear Chat", use_container_width=True):
st.session_state.messages = []
st.rerun()
# Chat Interface
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat history
for message in st.session_state.messages:
with st.chat_message(message["role"]):
st.markdown(message["content"])
selected_model = llama_stack_api.client.models.list()[0].identifier
agent_config = AgentConfig(
model=selected_model,
instructions=system_prompt,
sampling_params={
"strategy": "greedy",
"temperature": temperature,
"top_p": top_p,
},
tools=[
{
"type": "memory",
"memory_bank_configs": memory_bank_configs,
"query_generator_config": {"type": "default", "sep": " "},
"max_tokens_in_context": 4096,
"max_chunks": 10,
}
],
tool_choice="auto",
tool_prompt_format="json",
input_shields=[],
output_shields=[],
enable_session_persistence=False,
)
agent = Agent(llama_stack_api.client, agent_config)
session_id = agent.create_session("rag-session")
# Chat input
if prompt := st.chat_input("Ask a question about your documents"):
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt})
# Display user message
with st.chat_message("user"):
st.markdown(prompt)
response = agent.create_turn(
messages=[
{
"role": "user",
"content": prompt,
}
],
session_id=session_id,
)
# Display assistant response
with st.chat_message("assistant"):
retrieval_message_placeholder = st.empty()
message_placeholder = st.empty()
full_response = ""
retrieval_response = ""
for log in EventLogger().log(response):
log.print()
if log.role == "memory_retrieval":
retrieval_response += log.content.replace("====", "").strip()
retrieval_message_placeholder.info(retrieval_response)
else:
full_response += log.content
message_placeholder.markdown(full_response + "")
message_placeholder.markdown(full_response)
st.session_state.messages.append(
{"role": "assistant", "content": full_response}
)
rag_chat_page()