[inference] Add a TGI adapter (#52)

* TGI adapter and some refactoring of other inference adapters

* Use the lower-level `generate_stream()` method for correct tool calling

---------

Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
This commit is contained in:
Ashwin Bharambe 2024-09-04 22:49:33 -07:00 committed by GitHub
parent 6ad7365676
commit 21bedc1596
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
3 changed files with 256 additions and 0 deletions

View file

@ -0,0 +1,15 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_toolchain.core.datatypes import RemoteProviderConfig
async def get_adapter_impl(config: RemoteProviderConfig, _deps):
from .tgi import TGIInferenceAdapter
impl = TGIInferenceAdapter(config.url)
await impl.initialize()
return impl

View file

@ -0,0 +1,233 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import AsyncGenerator, List
import httpx
from llama_models.llama3.api.chat_format import ChatFormat
from llama_models.llama3.api.datatypes import Message, StopReason
from llama_models.llama3.api.tokenizer import Tokenizer
from text_generation import Client
from llama_toolchain.inference.api import * # noqa: F403
from llama_toolchain.inference.prepare_messages import prepare_messages
SUPPORTED_MODELS = {
"Meta-Llama3.1-8B-Instruct": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama3.1-70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Meta-Llama3.1-405B-Instruct": "meta-llama/Meta-Llama-3.1-405B-Instruct",
}
class TGIInferenceAdapter(Inference):
def __init__(self, url: str) -> None:
self.url = url.rstrip("/")
self.tokenizer = Tokenizer.get_instance()
self.formatter = ChatFormat(self.tokenizer)
self.model = None
self.max_tokens = None
async def initialize(self) -> None:
hf_models = {v: k for k, v in SUPPORTED_MODELS.items()}
try:
print(f"Connecting to TGI server at: {self.url}")
async with httpx.AsyncClient() as client:
response = await client.get(f"{self.url}/info")
response.raise_for_status()
info = response.json()
if "model_id" not in info:
raise RuntimeError("Missing model_id in model info")
if "max_total_tokens" not in info:
raise RuntimeError("Missing max_total_tokens in model info")
self.max_tokens = info["max_total_tokens"]
model_id = info["model_id"]
if model_id not in hf_models:
raise RuntimeError(
f"TGI is serving model: {model_id}, use one of the supported models: {','.join(hf_models.keys())}"
)
self.model = hf_models[model_id]
except Exception as e:
import traceback
traceback.print_exc()
raise RuntimeError("Could not connect to TGI server") from e
async def shutdown(self) -> None:
pass
async def completion(self, request: CompletionRequest) -> AsyncGenerator:
raise NotImplementedError()
def _convert_messages(self, messages: List[Message]) -> List[Message]:
ret = []
for message in messages:
if message.role == "ipython":
role = "tool"
else:
role = message.role
ret.append({"role": role, "content": message.content})
return ret
def get_chat_options(self, request: ChatCompletionRequest) -> dict:
options = {}
if request.sampling_params is not None:
for attr in {"temperature", "top_p", "top_k", "max_tokens"}:
if getattr(request.sampling_params, attr):
options[attr] = getattr(request.sampling_params, attr)
return options
async def chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
messages = prepare_messages(request)
model_input = self.formatter.encode_dialog_prompt(messages)
prompt = self.tokenizer.decode(model_input.tokens)
max_new_tokens = min(
request.sampling_params.max_tokens or self.max_tokens,
self.max_tokens - len(model_input.tokens) - 1,
)
if request.model != self.model:
raise ValueError(
f"Model mismatch, expected: {self.model}, got: {request.model}"
)
options = self.get_chat_options(request)
client = Client(base_url=self.url)
if not request.stream:
r = client.generate(
prompt,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
)
if r.details.finish_reason:
if r.details.finish_reason == "stop":
stop_reason = StopReason.end_of_turn
elif r.details.finish_reason == "length":
stop_reason = StopReason.out_of_tokens
else:
stop_reason = StopReason.end_of_message
else:
stop_reason = StopReason.out_of_tokens
completion_message = self.formatter.decode_assistant_message_from_content(
r.generated_text, stop_reason
)
yield ChatCompletionResponse(
completion_message=completion_message,
logprobs=None,
)
else:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.start,
delta="",
)
)
buffer = ""
ipython = False
stop_reason = None
tokens = []
for response in client.generate_stream(
prompt,
max_new_tokens=max_new_tokens,
stop_sequences=["<|eom_id|>", "<|eot_id|>"],
**options,
):
token_result = response.token
buffer += token_result.text
tokens.append(token_result.id)
if not ipython and buffer.startswith("<|python_tag|>"):
ipython = True
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.started,
),
)
)
buffer = buffer[len("<|python_tag|>") :]
continue
if token_result.text == "<|eot_id|>":
stop_reason = StopReason.end_of_turn
text = ""
elif token_result.text == "<|eom_id|>":
stop_reason = StopReason.end_of_message
text = ""
else:
text = token_result.text
if ipython:
delta = ToolCallDelta(
content=text,
parse_status=ToolCallParseStatus.in_progress,
)
else:
delta = text
if stop_reason is None:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=delta,
stop_reason=stop_reason,
)
)
if stop_reason is None:
stop_reason = StopReason.out_of_tokens
# parse tool calls and report errors
message = self.formatter.decode_assistant_message(tokens, stop_reason)
parsed_tool_calls = len(message.tool_calls) > 0
if ipython and not parsed_tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content="",
parse_status=ToolCallParseStatus.failure,
),
stop_reason=stop_reason,
)
)
for tool_call in message.tool_calls:
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.progress,
delta=ToolCallDelta(
content=tool_call,
parse_status=ToolCallParseStatus.success,
),
stop_reason=stop_reason,
)
)
yield ChatCompletionResponseStreamChunk(
event=ChatCompletionResponseEvent(
event_type=ChatCompletionResponseEventType.complete,
delta="",
stop_reason=stop_reason,
)
)

View file

@ -35,6 +35,14 @@ def available_inference_providers() -> List[ProviderSpec]:
module="llama_toolchain.inference.adapters.ollama",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(
adapter_id="tgi",
pip_packages=["text-generation"],
module="llama_toolchain.inference.adapters.tgi",
),
),
remote_provider_spec(
api=Api.inference,
adapter=AdapterSpec(