[Evals API][11/n] huggingface dataset provider + mmlu scoring fn (#392)

* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* huggingface provider

* datasetdef files

* mmlu scoring fn

* test wip

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* huggingface provider

* wip huggingface register

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* fix

* mmlu loose

* refactor

* msg

* fix tests

* move benchmark task def to file

* msg

* gen openapi

* openapi gen

* move dataset to hf llamastack repo

* remove todo

* refactor

* add register model to unit test

* rename

* register to client

* delete preregistered dataset/eval task

* comments

* huggingface -> remote adapter

* openapi gen
This commit is contained in:
Xi Yan 2024-11-11 14:49:50 -05:00 committed by GitHub
parent b78ee3a0a5
commit 2b7d70ba86
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
20 changed files with 1607 additions and 718 deletions

View file

@ -49,6 +49,7 @@ from llama_stack.apis.models import * # noqa: F403
from llama_stack.apis.memory_banks import * # noqa: F403
from llama_stack.apis.shields import * # noqa: F403
from llama_stack.apis.inspect import * # noqa: F403
from llama_stack.apis.eval_tasks import * # noqa: F403
class LlamaStack(
@ -63,6 +64,7 @@ class LlamaStack(
PostTraining,
Memory,
Eval,
EvalTasks,
Scoring,
ScoringFunctions,
DatasetIO,

File diff suppressed because it is too large Load diff

File diff suppressed because it is too large Load diff

View file

@ -40,6 +40,10 @@ EvalCandidate = Annotated[
class BenchmarkEvalTaskConfig(BaseModel):
type: Literal["benchmark"] = "benchmark"
eval_candidate: EvalCandidate
num_examples: Optional[int] = Field(
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
default=None,
)
@json_schema_type
@ -50,6 +54,10 @@ class AppEvalTaskConfig(BaseModel):
description="Map between scoring function id and parameters for each scoring function you want to run",
default_factory=dict,
)
num_examples: Optional[int] = Field(
description="Number of examples to evaluate (useful for testing), if not provided, all examples in the dataset will be evaluated",
default=None,
)
# we could optinally add any specific dataset config here

View file

@ -0,0 +1,18 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from .config import HuggingfaceDatasetIOConfig
async def get_adapter_impl(
config: HuggingfaceDatasetIOConfig,
_deps,
):
from .huggingface import HuggingfaceDatasetIOImpl
impl = HuggingfaceDatasetIOImpl(config)
await impl.initialize()
return impl

View file

@ -0,0 +1,9 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.datasetio import * # noqa: F401, F403
class HuggingfaceDatasetIOConfig(BaseModel): ...

View file

@ -0,0 +1,81 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from typing import List, Optional
from llama_stack.apis.datasetio import * # noqa: F403
import datasets as hf_datasets
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
from .config import HuggingfaceDatasetIOConfig
def load_hf_dataset(dataset_def: DatasetDef):
if dataset_def.metadata.get("path", None):
return hf_datasets.load_dataset(**dataset_def.metadata)
df = get_dataframe_from_url(dataset_def.url)
if df is None:
raise ValueError(f"Failed to load dataset from {dataset_def.url}")
dataset = hf_datasets.Dataset.from_pandas(df)
return dataset
class HuggingfaceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
def __init__(self, config: HuggingfaceDatasetIOConfig) -> None:
self.config = config
# local registry for keeping track of datasets within the provider
self.dataset_infos = {}
async def initialize(self) -> None:
pass
async def shutdown(self) -> None: ...
async def register_dataset(
self,
dataset_def: DatasetDef,
) -> None:
self.dataset_infos[dataset_def.identifier] = dataset_def
async def list_datasets(self) -> List[DatasetDef]:
return list(self.dataset_infos.values())
async def get_rows_paginated(
self,
dataset_id: str,
rows_in_page: int,
page_token: Optional[str] = None,
filter_condition: Optional[str] = None,
) -> PaginatedRowsResult:
dataset_def = self.dataset_infos[dataset_id]
loaded_dataset = load_hf_dataset(dataset_def)
if page_token and not page_token.isnumeric():
raise ValueError("Invalid page_token")
if page_token is None or len(page_token) == 0:
next_page_token = 0
else:
next_page_token = int(page_token)
start = next_page_token
if rows_in_page == -1:
end = len(loaded_dataset)
else:
end = min(start + rows_in_page, len(loaded_dataset))
rows = [loaded_dataset[i] for i in range(start, end)]
return PaginatedRowsResult(
rows=rows,
total_count=len(rows),
next_page_token=str(end),
)

View file

@ -3,20 +3,17 @@
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import io
from typing import List, Optional
import pandas
from llama_models.llama3.api.datatypes import * # noqa: F403
from llama_stack.apis.datasetio import * # noqa: F403
import base64
from abc import ABC, abstractmethod
from dataclasses import dataclass
from urllib.parse import unquote
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
from llama_stack.providers.utils.memory.vector_store import parse_data_url
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
from .config import MetaReferenceDatasetIOConfig
@ -73,31 +70,9 @@ class PandasDataframeDataset(BaseDataset):
if self.df is not None:
return
# TODO: more robust support w/ data url
if self.dataset_def.url.uri.endswith(".csv"):
df = pandas.read_csv(self.dataset_def.url.uri)
elif self.dataset_def.url.uri.endswith(".xlsx"):
df = pandas.read_excel(self.dataset_def.url.uri)
elif self.dataset_def.url.uri.startswith("data:"):
parts = parse_data_url(self.dataset_def.url.uri)
data = parts["data"]
if parts["is_base64"]:
data = base64.b64decode(data)
else:
data = unquote(data)
encoding = parts["encoding"] or "utf-8"
data = data.encode(encoding)
mime_type = parts["mimetype"]
mime_category = mime_type.split("/")[0]
data_bytes = io.BytesIO(data)
if mime_category == "text":
df = pandas.read_csv(data_bytes)
else:
df = pandas.read_excel(data_bytes)
else:
raise ValueError(f"Unsupported file type: {self.dataset_def.url}")
df = get_dataframe_from_url(self.dataset_def.url)
if df is None:
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
self.df = self._validate_dataset_schema(df)

View file

@ -9,6 +9,8 @@ from llama_models.llama3.api.datatypes import * # noqa: F403
from .....apis.common.job_types import Job
from .....apis.eval.eval import Eval, EvalTaskConfig, EvaluateResponse, JobStatus
from llama_stack.apis.common.type_system import * # noqa: F403
from tqdm import tqdm
from llama_stack.apis.datasetio import DatasetIO
from llama_stack.apis.datasets import Datasets
from llama_stack.apis.eval_tasks import EvalTaskDef
@ -47,7 +49,8 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
self.eval_tasks = {}
async def initialize(self) -> None: ...
async def initialize(self) -> None:
pass
async def shutdown(self) -> None: ...
@ -93,7 +96,9 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
await self.validate_eval_input_dataset_schema(dataset_id=dataset_id)
all_rows = await self.datasetio_api.get_rows_paginated(
dataset_id=dataset_id,
rows_in_page=-1,
rows_in_page=(
-1 if task_config.num_examples is None else task_config.num_examples
),
)
res = await self.evaluate_rows(
task_id=task_id,
@ -125,7 +130,7 @@ class MetaReferenceEvalImpl(Eval, EvalTasksProtocolPrivate):
), "SamplingParams.max_tokens must be provided"
generations = []
for x in input_rows:
for x in tqdm(input_rows):
if ColumnName.completion_input.value in x:
input_content = eval(str(x[ColumnName.completion_input.value]))
response = await self.inference_api.completion(

View file

@ -13,21 +13,14 @@ from llama_stack.apis.datasetio import * # noqa: F403
from llama_stack.apis.datasets import * # noqa: F403
from llama_stack.apis.inference.inference import Inference
from llama_stack.providers.datatypes import ScoringFunctionsProtocolPrivate
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.equality_scoring_fn import (
EqualityScoringFn,
)
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.llm_as_judge_scoring_fn import (
LlmAsJudgeScoringFn,
)
from llama_stack.providers.inline.meta_reference.scoring.scoring_fn.subset_of_scoring_fn import (
SubsetOfScoringFn,
)
from .config import MetaReferenceScoringConfig
from .scoring_fn.equality_scoring_fn import EqualityScoringFn
from .scoring_fn.llm_as_judge_scoring_fn import LlmAsJudgeScoringFn
from .scoring_fn.regex_parser_scoring_fn import RegexParserScoringFn
from .scoring_fn.subset_of_scoring_fn import SubsetOfScoringFn
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn]
FIXED_FNS = [EqualityScoringFn, SubsetOfScoringFn, RegexParserScoringFn]
LLM_JUDGE_FNS = [LlmAsJudgeScoringFn]

View file

@ -11,6 +11,5 @@ from llama_stack.apis.scoring_functions import ScoringFnDef
equality = ScoringFnDef(
identifier="meta-reference::equality",
description="Returns 1.0 if the input is equal to the target, 0.0 otherwise.",
parameters=[],
return_type=NumberType(),
)

View file

@ -26,7 +26,6 @@ Total rating:
llm_as_judge_8b_correctness = ScoringFnDef(
identifier="meta-reference::llm_as_judge_8b_correctness",
description="Llm As Judge Scoring Function",
parameters=[],
return_type=NumberType(),
params=LLMAsJudgeScoringFnParams(
prompt_template=JUDGE_PROMPT,

View file

@ -0,0 +1,69 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import NumberType
MULTILINGUAL_ANSWER_REGEXES = [
r"Answer\s*:",
r"Answer\s*:", # Korean invisible character
r"উত্তর\s*:",
r"उत्तर\s*:",
r"উত্তরঃ",
r"উত্তর\s*:",
r"Antwort\s*:",
r"답변\s*:",
r"정답\s*:",
r"\s*:",
r"答案\s*",
r"答案\s*:",
r"\s*",
r"\s*:",
r"答复\s*",
r"答曰\s*",
r"الإجابة:",
r"الجواب:",
r"إجابة:",
r"الإجابة النهائية:",
r"الإجابة الصحيحة:",
r"الإجابة الصحيحة هي:",
r"الإجابة هي:",
r"Respuesta\s*:",
r"Risposta\s*:",
r"答え\s*:",
r"答え\s*",
r"回答\s*:",
r"回答\s*",
r"解答\s*:",
r"Jawaban\s*:",
r"Réponse\s*:",
r"Resposta\s*:",
r"Jibu\s*:",
r"Idahun\s*:",
r"Ìdáhùn\s*:",
r"Idáhùn\s*:",
r"Àmọ̀nà\s*:",
r"Àdáhùn\s*:",
r"Ànúgọ\s*:",
r"Àṣàyàn\s*:",
]
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE = (
r"(?i){}\s*([A-D]|[أ-د]|[অ]|[ব]|[ড]|[ঢ]|[]|[]|[]|[])"
)
regex_parser_multiple_choice_answer = ScoringFnDef(
identifier="meta-reference::regex_parser_multiple_choice_answer",
description="Extract answer from response matching Answer: [the_answer_letter], and compare with expected result",
return_type=NumberType(),
params=RegexParserScoringFnParams(
parsing_regexes=[
MULTILINGUAL_ANSWER_PATTERN_TEMPLATE.format(x)
for x in MULTILINGUAL_ANSWER_REGEXES
],
),
)

View file

@ -0,0 +1,67 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import re
from .base_scoring_fn import BaseScoringFn
from llama_stack.apis.scoring_functions import * # noqa: F401, F403
from llama_stack.apis.scoring import * # noqa: F401, F403
from llama_stack.apis.common.type_system import * # noqa: F403
from .common import aggregate_accuracy
from .fn_defs.regex_parser_multiple_choice_answer import (
regex_parser_multiple_choice_answer,
)
class RegexParserScoringFn(BaseScoringFn):
"""
A scoring_fn that parses answer from generated response according to context and check match with expected_answer.
"""
def __init__(self, *args, **kwargs) -> None:
super().__init__(*args, **kwargs)
self.supported_fn_defs_registry = {
regex_parser_multiple_choice_answer.identifier: regex_parser_multiple_choice_answer,
}
async def score_row(
self,
input_row: Dict[str, Any],
scoring_fn_identifier: Optional[str] = None,
scoring_params: Optional[ScoringFnParams] = None,
) -> ScoringResultRow:
assert (
scoring_fn_identifier is not None
), "Scoring function identifier not found."
fn_def = self.supported_fn_defs_registry[scoring_fn_identifier]
if scoring_params is not None:
fn_def.params = scoring_params
assert (
fn_def.params is not None
and fn_def.params.type == ScoringConfigType.regex_parser.value
), f"RegexParserScoringFnParams not found for {fn_def}."
expected_answer = input_row["expected_answer"]
generated_answer = input_row["generated_answer"]
# parse answer according to regex
parsed_answer = None
for regex in fn_def.params.parsing_regexes:
match = re.search(regex, generated_answer)
if match:
parsed_answer = match.group(1)
break
score = 1.0 if parsed_answer and parsed_answer == expected_answer else 0.0
return {
"score": score,
}
async def aggregate(
self, scoring_results: List[ScoringResultRow]
) -> Dict[str, Any]:
return aggregate_accuracy(scoring_results)

View file

@ -19,4 +19,15 @@ def available_providers() -> List[ProviderSpec]:
config_class="llama_stack.providers.inline.meta_reference.datasetio.MetaReferenceDatasetIOConfig",
api_dependencies=[],
),
remote_provider_spec(
api=Api.datasetio,
adapter=AdapterSpec(
adapter_type="huggingface",
pip_packages=[
"datasets",
],
module="llama_stack.providers.adapters.datasetio.huggingface",
config_class="llama_stack.providers.adapters.datasetio.huggingface.HuggingfaceDatasetIOConfig",
),
),
]

View file

@ -31,7 +31,20 @@ def datasetio_meta_reference() -> ProviderFixture:
)
DATASETIO_FIXTURES = ["meta_reference", "remote"]
@pytest.fixture(scope="session")
def datasetio_huggingface() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
provider_id="huggingface",
provider_type="remote::huggingface",
config={},
)
],
)
DATASETIO_FIXTURES = ["meta_reference", "remote", "huggingface"]
@pytest_asyncio.fixture(scope="session")

View file

@ -34,6 +34,16 @@ DEFAULT_PROVIDER_COMBINATIONS = [
id="meta_reference_eval_together_inference",
marks=pytest.mark.meta_reference_eval_together_inference,
),
pytest.param(
{
"eval": "meta_reference",
"scoring": "meta_reference",
"datasetio": "huggingface",
"inference": "together",
},
id="meta_reference_eval_together_inference_huggingface_datasetio",
marks=pytest.mark.meta_reference_eval_together_inference_huggingface_datasetio,
),
]
@ -41,6 +51,7 @@ def pytest_configure(config):
for fixture_name in [
"meta_reference_eval_fireworks_inference",
"meta_reference_eval_together_inference",
"meta_reference_eval_together_inference_huggingface_datasetio",
]:
config.addinivalue_line(
"markers",

View file

@ -7,10 +7,15 @@
import pytest
from llama_models.llama3.api import SamplingParams
from llama_models.llama3.api import SamplingParams, URL
from llama_stack.apis.common.type_system import ChatCompletionInputType, StringType
from llama_stack.apis.datasetio.datasetio import DatasetDefWithProvider
from llama_stack.apis.eval.eval import (
AppEvalTaskConfig,
BenchmarkEvalTaskConfig,
EvalTaskDefWithProvider,
ModelCandidate,
)
@ -21,7 +26,7 @@ from llama_stack.providers.tests.datasetio.test_datasetio import register_datase
# How to run this test:
#
# pytest llama_stack/providers/tests/eval/test_eval.py
# -m "meta_reference"
# -m "meta_reference_eval_together_inference_huggingface_datasetio"
# -v -s --tb=short --disable-warnings
@ -33,21 +38,26 @@ class Testeval:
eval_tasks_impl = eval_stack[Api.eval_tasks]
response = await eval_tasks_impl.list_eval_tasks()
assert isinstance(response, list)
assert len(response) == 0
@pytest.mark.asyncio
async def test_eval_evaluate_rows(self, eval_stack):
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl = (
eval_impl, eval_tasks_impl, datasetio_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasetio],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
response = await datasets_impl.list_datasets()
assert len(response) == 1
rows = await datasetio_impl.get_rows_paginated(
dataset_id="test_dataset_for_eval",
rows_in_page=3,
@ -66,7 +76,6 @@ class Testeval:
provider_id="meta-reference",
)
await eval_tasks_impl.register_eval_task(task_def)
response = await eval_impl.evaluate_rows(
task_id=task_id,
input_rows=rows.rows,
@ -84,11 +93,17 @@ class Testeval:
@pytest.mark.asyncio
async def test_eval_run_eval(self, eval_stack):
eval_impl, eval_tasks_impl, datasets_impl = (
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
await register_dataset(
datasets_impl, for_generation=True, dataset_id="test_dataset_for_eval"
)
@ -124,3 +139,72 @@ class Testeval:
assert len(eval_response.generations) == 5
assert "meta-reference::subset_of" in eval_response.scores
assert "meta-reference::llm_as_judge_8b_correctness" in eval_response.scores
@pytest.mark.asyncio
async def test_eval_run_benchmark_eval(self, eval_stack):
eval_impl, eval_tasks_impl, datasets_impl, models_impl = (
eval_stack[Api.eval],
eval_stack[Api.eval_tasks],
eval_stack[Api.datasets],
eval_stack[Api.models],
)
for model_id in ["Llama3.2-3B-Instruct", "Llama3.1-8B-Instruct"]:
await models_impl.register_model(
model_id=model_id,
provider_id="",
)
response = await datasets_impl.list_datasets()
assert len(response) > 0
if response[0].provider_id != "huggingface":
pytest.skip(
"Only huggingface provider supports pre-registered remote datasets"
)
# register dataset
mmlu = DatasetDefWithProvider(
identifier="mmlu",
url=URL(uri="https://huggingface.co/datasets/llamastack/evals"),
dataset_schema={
"input_query": StringType(),
"expected_answer": StringType(),
"chat_completion_input": ChatCompletionInputType(),
},
metadata={
"path": "llamastack/evals",
"name": "evals__mmlu__details",
"split": "train",
},
provider_id="",
)
await datasets_impl.register_dataset(mmlu)
# register eval task
meta_reference_mmlu = EvalTaskDefWithProvider(
identifier="meta-reference-mmlu",
dataset_id="mmlu",
scoring_functions=["meta-reference::regex_parser_multiple_choice_answer"],
provider_id="",
)
await eval_tasks_impl.register_eval_task(meta_reference_mmlu)
# list benchmarks
response = await eval_tasks_impl.list_eval_tasks()
assert len(response) > 0
benchmark_id = "meta-reference-mmlu"
response = await eval_impl.run_eval(
task_id=benchmark_id,
task_config=BenchmarkEvalTaskConfig(
eval_candidate=ModelCandidate(
model="Llama3.2-3B-Instruct",
sampling_params=SamplingParams(),
),
num_examples=3,
),
)
job_status = await eval_impl.job_status(benchmark_id, response.job_id)
assert job_status and job_status.value == "completed"
eval_response = await eval_impl.job_result(benchmark_id, response.job_id)
assert eval_response is not None
assert len(eval_response.generations) == 3

View file

@ -0,0 +1,5 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.

View file

@ -0,0 +1,45 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import base64
import io
from urllib.parse import unquote
import pandas
from llama_models.llama3.api.datatypes import URL
from llama_stack.providers.utils.memory.vector_store import parse_data_url
def get_dataframe_from_url(url: URL):
df = None
if url.uri.endswith(".csv"):
df = pandas.read_csv(url.uri)
elif url.uri.endswith(".xlsx"):
df = pandas.read_excel(url.uri)
elif url.uri.startswith("data:"):
parts = parse_data_url(url.uri)
data = parts["data"]
if parts["is_base64"]:
data = base64.b64decode(data)
else:
data = unquote(data)
encoding = parts["encoding"] or "utf-8"
data = data.encode(encoding)
mime_type = parts["mimetype"]
mime_category = mime_type.split("/")[0]
data_bytes = io.BytesIO(data)
if mime_category == "text":
df = pandas.read_csv(data_bytes)
else:
df = pandas.read_excel(data_bytes)
else:
raise ValueError(f"Unsupported file type: {url}")
return df