forked from phoenix-oss/llama-stack-mirror
* wip * scoring fn api * eval api * eval task * evaluate api update * pre commit * unwrap context -> config * config field doc * typo * naming fix * separate benchmark / app eval * api name * rename * wip tests * wip * datasetio test * delete unused * fixture * scoring resolve * fix scoring register * scoring test pass * score batch * scoring fix * fix eval * test eval works * huggingface provider * datasetdef files * mmlu scoring fn * test wip * remove type ignore * api refactor * add default task_eval_id for routing * add eval_id for jobs * remove type ignore * huggingface provider * wip huggingface register * only keep 1 run_eval * fix optional * register task required * register task required * delete old tests * fix * mmlu loose * refactor * msg * fix tests * move benchmark task def to file * msg * gen openapi * openapi gen * move dataset to hf llamastack repo * remove todo * refactor * add register model to unit test * rename * register to client * delete preregistered dataset/eval task * comments * huggingface -> remote adapter * openapi gen
133 lines
4.1 KiB
Python
133 lines
4.1 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
from typing import List, Optional
|
|
|
|
import pandas
|
|
from llama_models.llama3.api.datatypes import * # noqa: F403
|
|
|
|
from llama_stack.apis.datasetio import * # noqa: F403
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
|
|
from llama_stack.providers.datatypes import DatasetsProtocolPrivate
|
|
from llama_stack.providers.utils.datasetio.url_utils import get_dataframe_from_url
|
|
|
|
from .config import MetaReferenceDatasetIOConfig
|
|
|
|
|
|
class BaseDataset(ABC):
|
|
def __init__(self, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
|
|
@abstractmethod
|
|
def __len__(self) -> int:
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def __getitem__(self, idx):
|
|
raise NotImplementedError()
|
|
|
|
@abstractmethod
|
|
def load(self):
|
|
raise NotImplementedError()
|
|
|
|
|
|
@dataclass
|
|
class DatasetInfo:
|
|
dataset_def: DatasetDef
|
|
dataset_impl: BaseDataset
|
|
|
|
|
|
class PandasDataframeDataset(BaseDataset):
|
|
def __init__(self, dataset_def: DatasetDef, *args, **kwargs) -> None:
|
|
super().__init__(*args, **kwargs)
|
|
self.dataset_def = dataset_def
|
|
self.df = None
|
|
|
|
def __len__(self) -> int:
|
|
assert self.df is not None, "Dataset not loaded. Please call .load() first"
|
|
return len(self.df)
|
|
|
|
def __getitem__(self, idx):
|
|
assert self.df is not None, "Dataset not loaded. Please call .load() first"
|
|
if isinstance(idx, slice):
|
|
return self.df.iloc[idx].to_dict(orient="records")
|
|
else:
|
|
return self.df.iloc[idx].to_dict()
|
|
|
|
def _validate_dataset_schema(self, df) -> pandas.DataFrame:
|
|
# note that we will drop any columns in dataset that are not in the schema
|
|
df = df[self.dataset_def.dataset_schema.keys()]
|
|
# check all columns in dataset schema are present
|
|
assert len(df.columns) == len(self.dataset_def.dataset_schema)
|
|
# TODO: type checking against column types in dataset schema
|
|
return df
|
|
|
|
def load(self) -> None:
|
|
if self.df is not None:
|
|
return
|
|
|
|
df = get_dataframe_from_url(self.dataset_def.url)
|
|
if df is None:
|
|
raise ValueError(f"Failed to load dataset from {self.dataset_def.url}")
|
|
|
|
self.df = self._validate_dataset_schema(df)
|
|
|
|
|
|
class MetaReferenceDatasetIOImpl(DatasetIO, DatasetsProtocolPrivate):
|
|
def __init__(self, config: MetaReferenceDatasetIOConfig) -> None:
|
|
self.config = config
|
|
# local registry for keeping track of datasets within the provider
|
|
self.dataset_infos = {}
|
|
|
|
async def initialize(self) -> None: ...
|
|
|
|
async def shutdown(self) -> None: ...
|
|
|
|
async def register_dataset(
|
|
self,
|
|
dataset_def: DatasetDef,
|
|
) -> None:
|
|
dataset_impl = PandasDataframeDataset(dataset_def)
|
|
self.dataset_infos[dataset_def.identifier] = DatasetInfo(
|
|
dataset_def=dataset_def,
|
|
dataset_impl=dataset_impl,
|
|
)
|
|
|
|
async def list_datasets(self) -> List[DatasetDef]:
|
|
return [i.dataset_def for i in self.dataset_infos.values()]
|
|
|
|
async def get_rows_paginated(
|
|
self,
|
|
dataset_id: str,
|
|
rows_in_page: int,
|
|
page_token: Optional[str] = None,
|
|
filter_condition: Optional[str] = None,
|
|
) -> PaginatedRowsResult:
|
|
dataset_info = self.dataset_infos.get(dataset_id)
|
|
dataset_info.dataset_impl.load()
|
|
|
|
if page_token and not page_token.isnumeric():
|
|
raise ValueError("Invalid page_token")
|
|
|
|
if page_token is None or len(page_token) == 0:
|
|
next_page_token = 0
|
|
else:
|
|
next_page_token = int(page_token)
|
|
|
|
start = next_page_token
|
|
if rows_in_page == -1:
|
|
end = len(dataset_info.dataset_impl)
|
|
else:
|
|
end = min(start + rows_in_page, len(dataset_info.dataset_impl))
|
|
|
|
rows = dataset_info.dataset_impl[start:end]
|
|
|
|
return PaginatedRowsResult(
|
|
rows=rows,
|
|
total_count=len(rows),
|
|
next_page_token=str(end),
|
|
)
|