[memory refactor][2/n] Update faiss and make it pass tests (#830)

See https://github.com/meta-llama/llama-stack/issues/827 for the broader
design.

Second part:

- updates routing table / router code 
- updates the faiss implementation


## Test Plan

```
pytest -s -v -k sentence test_vector_io.py --env EMBEDDING_DIMENSION=384
```
This commit is contained in:
Ashwin Bharambe 2025-01-22 10:02:15 -08:00 committed by GitHub
parent 3ae8585b65
commit 78a481bb22
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
19 changed files with 343 additions and 353 deletions

View file

@ -302,7 +302,7 @@ def pytest_collection_modifyitems(session, config, items):
pytest_plugins = [
"llama_stack.providers.tests.inference.fixtures",
"llama_stack.providers.tests.safety.fixtures",
"llama_stack.providers.tests.memory.fixtures",
"llama_stack.providers.tests.vector_io.fixtures",
"llama_stack.providers.tests.agents.fixtures",
"llama_stack.providers.tests.datasetio.fixtures",
"llama_stack.providers.tests.scoring.fixtures",

View file

@ -1,192 +0,0 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
import pytest
from llama_stack.apis.memory import MemoryBankDocument, QueryDocumentsResponse
from llama_stack.apis.memory_banks import (
MemoryBank,
MemoryBanks,
VectorMemoryBankParams,
)
# How to run this test:
#
# pytest llama_stack/providers/tests/memory/test_memory.py
# -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
# -v -s --tb=short --disable-warnings
@pytest.fixture
def sample_documents():
return [
MemoryBankDocument(
document_id="doc1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
MemoryBankDocument(
document_id="doc2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
MemoryBankDocument(
document_id="doc3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
MemoryBankDocument(
document_id="doc4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
async def register_memory_bank(
banks_impl: MemoryBanks, embedding_model: str
) -> MemoryBank:
bank_id = f"test_bank_{uuid.uuid4().hex}"
return await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
)
class TestMemory:
@pytest.mark.asyncio
async def test_banks_list(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
# Register a test bank
registered_bank = await register_memory_bank(banks_impl, embedding_model)
try:
# Verify our bank shows up in list
response = await banks_impl.list_memory_banks()
assert isinstance(response, list)
assert any(
bank.memory_bank_id == registered_bank.memory_bank_id
for bank in response
)
finally:
# Clean up
await banks_impl.unregister_memory_bank(registered_bank.memory_bank_id)
# Verify our bank was removed
response = await banks_impl.list_memory_banks()
assert all(
bank.memory_bank_id != registered_bank.memory_bank_id for bank in response
)
@pytest.mark.asyncio
async def test_banks_register(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
bank_id = f"test_bank_{uuid.uuid4().hex}"
try:
# Register initial bank
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
)
# Verify our bank exists
response = await banks_impl.list_memory_banks()
assert isinstance(response, list)
assert any(bank.memory_bank_id == bank_id for bank in response)
# Try registering same bank again
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
)
# Verify still only one instance of our bank
response = await banks_impl.list_memory_banks()
assert isinstance(response, list)
assert (
len([bank for bank in response if bank.memory_bank_id == bank_id]) == 1
)
finally:
# Clean up
await banks_impl.unregister_memory_bank(bank_id)
@pytest.mark.asyncio
async def test_query_documents(
self, memory_stack, embedding_model, sample_documents
):
memory_impl, banks_impl = memory_stack
with pytest.raises(ValueError):
await memory_impl.insert_documents("test_bank", sample_documents)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
await memory_impl.insert_documents(
registered_bank.memory_bank_id, sample_documents
)
query1 = "programming language"
response1 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query1
)
assert_valid_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Test case 3: Query with semantic similarity
query3 = "AI and brain-inspired computing"
response3 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query3
)
assert_valid_response(response3)
assert any(
"neural networks" in chunk.content.lower() for chunk in response3.chunks
)
# Test case 4: Query with limit on number of results
query4 = "computer"
params4 = {"max_chunks": 2}
response4 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query4, params4
)
assert_valid_response(response4)
assert len(response4.chunks) <= 2
# Test case 5: Query with threshold on similarity score
query5 = "quantum computing" # Not directly related to any document
params5 = {"score_threshold": 0.01}
response5 = await memory_impl.query_documents(
registered_bank.memory_bank_id, query5, params5
)
assert_valid_response(response5)
print("The scores are:", response5.scores)
assert all(score >= 0.01 for score in response5.scores)
def assert_valid_response(response: QueryDocumentsResponse):
assert isinstance(response, QueryDocumentsResponse)
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)
assert chunk.document_id is not None

View file

@ -12,11 +12,11 @@ from pydantic import BaseModel
from llama_stack.apis.datasets import DatasetInput
from llama_stack.apis.eval_tasks import EvalTaskInput
from llama_stack.apis.memory_banks import MemoryBankInput
from llama_stack.apis.models import ModelInput
from llama_stack.apis.scoring_functions import ScoringFnInput
from llama_stack.apis.shields import ShieldInput
from llama_stack.apis.tools import ToolGroupInput
from llama_stack.apis.vector_dbs import VectorDBInput
from llama_stack.distribution.build import print_pip_install_help
from llama_stack.distribution.configure import parse_and_maybe_upgrade_config
from llama_stack.distribution.datatypes import Provider, StackRunConfig
@ -39,7 +39,7 @@ async def construct_stack_for_test(
provider_data: Optional[Dict[str, Any]] = None,
models: Optional[List[ModelInput]] = None,
shields: Optional[List[ShieldInput]] = None,
memory_banks: Optional[List[MemoryBankInput]] = None,
vector_dbs: Optional[List[VectorDBInput]] = None,
datasets: Optional[List[DatasetInput]] = None,
scoring_fns: Optional[List[ScoringFnInput]] = None,
eval_tasks: Optional[List[EvalTaskInput]] = None,
@ -53,7 +53,7 @@ async def construct_stack_for_test(
metadata_store=SqliteKVStoreConfig(db_path=sqlite_file.name),
models=models or [],
shields=shields or [],
memory_banks=memory_banks or [],
vector_dbs=vector_dbs or [],
datasets=datasets or [],
scoring_fns=scoring_fns or [],
eval_tasks=eval_tasks or [],

View file

@ -13,14 +13,14 @@ from ..conftest import (
)
from ..inference.fixtures import INFERENCE_FIXTURES
from .fixtures import MEMORY_FIXTURES
from .fixtures import VECTOR_IO_FIXTURES
DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "sentence_transformers",
"memory": "faiss",
"vector_io": "faiss",
},
id="sentence_transformers",
marks=pytest.mark.sentence_transformers,
@ -28,7 +28,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "ollama",
"memory": "faiss",
"vector_io": "faiss",
},
id="ollama",
marks=pytest.mark.ollama,
@ -36,7 +36,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "sentence_transformers",
"memory": "chroma",
"vector_io": "chroma",
},
id="chroma",
marks=pytest.mark.chroma,
@ -44,7 +44,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "bedrock",
"memory": "qdrant",
"vector_io": "qdrant",
},
id="qdrant",
marks=pytest.mark.qdrant,
@ -52,7 +52,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
pytest.param(
{
"inference": "fireworks",
"memory": "weaviate",
"vector_io": "weaviate",
},
id="weaviate",
marks=pytest.mark.weaviate,
@ -61,7 +61,7 @@ DEFAULT_PROVIDER_COMBINATIONS = [
def pytest_configure(config):
for fixture_name in MEMORY_FIXTURES:
for fixture_name in VECTOR_IO_FIXTURES:
config.addinivalue_line(
"markers",
f"{fixture_name}: marks tests as {fixture_name} specific",
@ -69,7 +69,7 @@ def pytest_configure(config):
def pytest_generate_tests(metafunc):
test_config = get_test_config_for_api(metafunc.config, "memory")
test_config = get_test_config_for_api(metafunc.config, "vector_io")
if "embedding_model" in metafunc.fixturenames:
model = getattr(test_config, "embedding_model", None)
# Fall back to the default if not specified by the config file
@ -81,16 +81,16 @@ def pytest_generate_tests(metafunc):
metafunc.parametrize("embedding_model", params, indirect=True)
if "memory_stack" in metafunc.fixturenames:
if "vector_io_stack" in metafunc.fixturenames:
available_fixtures = {
"inference": INFERENCE_FIXTURES,
"memory": MEMORY_FIXTURES,
"vector_io": VECTOR_IO_FIXTURES,
}
combinations = (
get_provider_fixture_overrides_from_test_config(
metafunc.config, "memory", DEFAULT_PROVIDER_COMBINATIONS
metafunc.config, "vector_io", DEFAULT_PROVIDER_COMBINATIONS
)
or get_provider_fixture_overrides(metafunc.config, available_fixtures)
or DEFAULT_PROVIDER_COMBINATIONS
)
metafunc.parametrize("memory_stack", combinations, indirect=True)
metafunc.parametrize("vector_io_stack", combinations, indirect=True)

View file

@ -12,11 +12,12 @@ import pytest_asyncio
from llama_stack.apis.models import ModelInput, ModelType
from llama_stack.distribution.datatypes import Api, Provider
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
from llama_stack.providers.inline.memory.faiss import FaissImplConfig
from llama_stack.providers.remote.memory.chroma import ChromaRemoteImplConfig
from llama_stack.providers.remote.memory.pgvector import PGVectorConfig
from llama_stack.providers.remote.memory.weaviate import WeaviateConfig
from llama_stack.providers.inline.vector_io.chroma import ChromaInlineImplConfig
from llama_stack.providers.inline.vector_io.faiss import FaissImplConfig
from llama_stack.providers.remote.vector_io.chroma import ChromaRemoteImplConfig
from llama_stack.providers.remote.vector_io.pgvector import PGVectorConfig
from llama_stack.providers.remote.vector_io.weaviate import WeaviateConfig
from llama_stack.providers.tests.resolver import construct_stack_for_test
from llama_stack.providers.utils.kvstore.config import SqliteKVStoreConfig
@ -32,12 +33,12 @@ def embedding_model(request):
@pytest.fixture(scope="session")
def memory_remote() -> ProviderFixture:
def vector_io_remote() -> ProviderFixture:
return remote_stack_fixture()
@pytest.fixture(scope="session")
def memory_faiss() -> ProviderFixture:
def vector_io_faiss() -> ProviderFixture:
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".db")
return ProviderFixture(
providers=[
@ -53,7 +54,7 @@ def memory_faiss() -> ProviderFixture:
@pytest.fixture(scope="session")
def memory_pgvector() -> ProviderFixture:
def vector_io_pgvector() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
@ -72,7 +73,7 @@ def memory_pgvector() -> ProviderFixture:
@pytest.fixture(scope="session")
def memory_weaviate() -> ProviderFixture:
def vector_io_weaviate() -> ProviderFixture:
return ProviderFixture(
providers=[
Provider(
@ -89,7 +90,7 @@ def memory_weaviate() -> ProviderFixture:
@pytest.fixture(scope="session")
def memory_chroma() -> ProviderFixture:
def vector_io_chroma() -> ProviderFixture:
url = os.getenv("CHROMA_URL")
if url:
config = ChromaRemoteImplConfig(url=url)
@ -110,23 +111,23 @@ def memory_chroma() -> ProviderFixture:
)
MEMORY_FIXTURES = ["faiss", "pgvector", "weaviate", "remote", "chroma"]
VECTOR_IO_FIXTURES = ["faiss", "pgvector", "weaviate", "chroma"]
@pytest_asyncio.fixture(scope="session")
async def memory_stack(embedding_model, request):
async def vector_io_stack(embedding_model, request):
fixture_dict = request.param
providers = {}
provider_data = {}
for key in ["inference", "memory"]:
for key in ["inference", "vector_io"]:
fixture = request.getfixturevalue(f"{key}_{fixture_dict[key]}")
providers[key] = fixture.providers
if fixture.provider_data:
provider_data.update(fixture.provider_data)
test_stack = await construct_stack_for_test(
[Api.memory, Api.inference],
[Api.vector_io, Api.inference],
providers,
provider_data,
models=[
@ -140,4 +141,4 @@ async def memory_stack(embedding_model, request):
],
)
return test_stack.impls[Api.memory], test_stack.impls[Api.memory_banks]
return test_stack.impls[Api.vector_io], test_stack.impls[Api.vector_dbs]

View file

@ -0,0 +1,200 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the terms described in the LICENSE file in
# the root directory of this source tree.
import uuid
import pytest
from llama_stack.apis.vector_dbs import ListVectorDBsResponse, VectorDB
from llama_stack.apis.vector_io import QueryChunksResponse
from llama_stack.providers.utils.memory.vector_store import (
make_overlapped_chunks,
MemoryBankDocument,
)
# How to run this test:
#
# pytest llama_stack/providers/tests/memory/test_memory.py
# -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
# -v -s --tb=short --disable-warnings
@pytest.fixture(scope="session")
def sample_chunks():
docs = [
MemoryBankDocument(
document_id="doc1",
content="Python is a high-level programming language.",
metadata={"category": "programming", "difficulty": "beginner"},
),
MemoryBankDocument(
document_id="doc2",
content="Machine learning is a subset of artificial intelligence.",
metadata={"category": "AI", "difficulty": "advanced"},
),
MemoryBankDocument(
document_id="doc3",
content="Data structures are fundamental to computer science.",
metadata={"category": "computer science", "difficulty": "intermediate"},
),
MemoryBankDocument(
document_id="doc4",
content="Neural networks are inspired by biological neural networks.",
metadata={"category": "AI", "difficulty": "advanced"},
),
]
chunks = []
for doc in docs:
chunks.extend(
make_overlapped_chunks(
doc.document_id, doc.content, window_len=512, overlap_len=64
)
)
return chunks
async def register_vector_db(vector_dbs_impl: VectorDB, embedding_model: str):
vector_db_id = f"test_vector_db_{uuid.uuid4().hex}"
return await vector_dbs_impl.register_vector_db(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
)
class TestVectorIO:
@pytest.mark.asyncio
async def test_banks_list(self, vector_io_stack, embedding_model):
_, vector_dbs_impl = vector_io_stack
# Register a test bank
registered_vector_db = await register_vector_db(
vector_dbs_impl, embedding_model
)
try:
# Verify our bank shows up in list
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert any(
vector_db.vector_db_id == registered_vector_db.vector_db_id
for vector_db in response.data
)
finally:
# Clean up
await vector_dbs_impl.unregister_vector_db(
registered_vector_db.vector_db_id
)
# Verify our bank was removed
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert all(
vector_db.vector_db_id != registered_vector_db.vector_db_id
for vector_db in response.data
)
@pytest.mark.asyncio
async def test_banks_register(self, vector_io_stack, embedding_model):
_, vector_dbs_impl = vector_io_stack
vector_db_id = f"test_vector_db_{uuid.uuid4().hex}"
try:
# Register initial bank
await vector_dbs_impl.register_vector_db(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
)
# Verify our bank exists
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert any(
vector_db.vector_db_id == vector_db_id for vector_db in response.data
)
# Try registering same bank again
await vector_dbs_impl.register_vector_db(
vector_db_id=vector_db_id,
embedding_model=embedding_model,
embedding_dimension=384,
)
# Verify still only one instance of our bank
response = await vector_dbs_impl.list_vector_dbs()
assert isinstance(response, ListVectorDBsResponse)
assert (
len(
[
vector_db
for vector_db in response.data
if vector_db.vector_db_id == vector_db_id
]
)
== 1
)
finally:
# Clean up
await vector_dbs_impl.unregister_vector_db(vector_db_id)
@pytest.mark.asyncio
async def test_query_documents(
self, vector_io_stack, embedding_model, sample_chunks
):
vector_io_impl, vector_dbs_impl = vector_io_stack
with pytest.raises(ValueError):
await vector_io_impl.insert_chunks("test_vector_db", sample_chunks)
registered_db = await register_vector_db(vector_dbs_impl, embedding_model)
await vector_io_impl.insert_chunks(registered_db.vector_db_id, sample_chunks)
query1 = "programming language"
response1 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query1
)
assert_valid_response(response1)
assert any("Python" in chunk.content for chunk in response1.chunks)
# Test case 3: Query with semantic similarity
query3 = "AI and brain-inspired computing"
response3 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query3
)
assert_valid_response(response3)
assert any(
"neural networks" in chunk.content.lower() for chunk in response3.chunks
)
# Test case 4: Query with limit on number of results
query4 = "computer"
params4 = {"max_chunks": 2}
response4 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query4, params4
)
assert_valid_response(response4)
assert len(response4.chunks) <= 2
# Test case 5: Query with threshold on similarity score
query5 = "quantum computing" # Not directly related to any document
params5 = {"score_threshold": 0.01}
response5 = await vector_io_impl.query_chunks(
registered_db.vector_db_id, query5, params5
)
assert_valid_response(response5)
print("The scores are:", response5.scores)
assert all(score >= 0.01 for score in response5.scores)
def assert_valid_response(response: QueryChunksResponse):
assert len(response.chunks) > 0
assert len(response.scores) > 0
assert len(response.chunks) == len(response.scores)
for chunk in response.chunks:
assert isinstance(chunk.content, str)

View file

@ -11,8 +11,11 @@ from pathlib import Path
import pytest
from llama_stack.apis.memory.memory import MemoryBankDocument, URL
from llama_stack.providers.utils.memory.vector_store import content_from_doc
from llama_stack.providers.utils.memory.vector_store import (
content_from_doc,
MemoryBankDocument,
URL,
)
DUMMY_PDF_PATH = Path(os.path.abspath(__file__)).parent / "fixtures" / "dummy.pdf"