forked from phoenix-oss/llama-stack-mirror
remove conflicting default for tool prompt format in chat completion (#742)
# What does this PR do? We are setting a default value of json for tool prompt format, which conflicts with llama 3.2/3.3 models since they use python list. This PR changes the defaults to None and in the code, we infer default based on the model. Addresses: #695 Tests: ❯ LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v tests/client-sdk/inference/test_inference.py -k "test_text_chat_completion" pytest llama_stack/providers/tests/inference/test_prompt_adapter.py
This commit is contained in:
parent
24fa1adc2f
commit
8af6951106
21 changed files with 27 additions and 91 deletions
|
@ -10,7 +10,6 @@ from typing import AsyncGenerator, AsyncIterator, Dict, List, Optional, Union
|
|||
from botocore.client import BaseClient
|
||||
from llama_models.datatypes import CoreModelId
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
|
@ -30,7 +29,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.providers.remote.inference.bedrock.config import BedrockConfig
|
||||
from llama_stack.providers.utils.bedrock.client import create_bedrock_client
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
|
@ -47,7 +45,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
interleaved_content_as_str,
|
||||
)
|
||||
|
||||
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"meta.llama3-1-8b-instruct-v1:0",
|
||||
|
@ -101,7 +98,7 @@ class BedrockInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
|
|
|
@ -7,11 +7,8 @@
|
|||
from typing import AsyncGenerator, List, Optional, Union
|
||||
|
||||
from cerebras.cloud.sdk import AsyncCerebras
|
||||
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
|
@ -29,7 +26,6 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
|
@ -48,7 +44,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import CerebrasImplConfig
|
||||
|
||||
|
||||
model_aliases = [
|
||||
build_model_alias(
|
||||
"llama3.1-8b",
|
||||
|
@ -130,7 +125,7 @@ class CerebrasInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
|
|
|
@ -7,11 +7,8 @@
|
|||
from typing import AsyncGenerator, List, Optional
|
||||
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
|
@ -28,7 +25,6 @@ from llama_stack.apis.inference import (
|
|||
ToolDefinition,
|
||||
ToolPromptFormat,
|
||||
)
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
|
@ -44,7 +40,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import DatabricksImplConfig
|
||||
|
||||
|
||||
model_aliases = [
|
||||
build_model_alias(
|
||||
"databricks-meta-llama-3-1-70b-instruct",
|
||||
|
@ -91,7 +86,7 @@ class DatabricksInferenceAdapter(ModelRegistryHelper, Inference):
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
|
|
|
@ -8,7 +8,6 @@ from typing import AsyncGenerator, List, Optional, Union
|
|||
|
||||
from fireworks.client import Fireworks
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
|
||||
|
@ -52,7 +51,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import FireworksImplConfig
|
||||
|
||||
|
||||
MODEL_ALIASES = [
|
||||
build_model_alias(
|
||||
"fireworks/llama-v3p1-8b-instruct",
|
||||
|
@ -198,7 +196,7 @@ class FireworksInferenceAdapter(
|
|||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
|
|
|
@ -33,6 +33,7 @@ from llama_stack.providers.utils.inference.model_registry import (
|
|||
build_model_alias_with_just_provider_model_id,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
||||
from .groq_utils import (
|
||||
convert_chat_completion_request,
|
||||
convert_chat_completion_response,
|
||||
|
@ -94,9 +95,7 @@ class GroqInferenceAdapter(Inference, ModelRegistryHelper, NeedsRequestProviderD
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[
|
||||
ToolPromptFormat
|
||||
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
|
|
|
@ -175,9 +175,7 @@ class NVIDIAInferenceAdapter(Inference, ModelRegistryHelper):
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[
|
||||
ToolPromptFormat
|
||||
] = None, # API default is ToolPromptFormat.json, we default to None to detect user input
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> Union[
|
||||
|
|
|
@ -9,7 +9,6 @@ from typing import AsyncGenerator, List, Optional, Union
|
|||
|
||||
import httpx
|
||||
from llama_models.datatypes import CoreModelId
|
||||
|
||||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from ollama import AsyncClient
|
||||
|
@ -35,7 +34,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
build_model_alias_with_just_provider_model_id,
|
||||
|
@ -222,7 +220,7 @@ class OllamaInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
|
|
|
@ -30,13 +30,11 @@ from llama_stack.apis.inference import (
|
|||
ToolPromptFormat,
|
||||
)
|
||||
from llama_stack.apis.models import Model
|
||||
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
)
|
||||
|
||||
from llama_stack.providers.utils.inference.openai_compat import (
|
||||
get_sampling_options,
|
||||
OpenAICompatCompletionChoice,
|
||||
|
@ -205,7 +203,7 @@ class _HfAdapter(Inference, ModelsProtocolPrivate):
|
|||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
|
|
|
@ -184,7 +184,7 @@ class TogetherInferenceAdapter(
|
|||
sampling_params: Optional[SamplingParams] = SamplingParams(),
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
response_format: Optional[ResponseFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
|
|
|
@ -10,7 +10,6 @@ from typing import AsyncGenerator, List, Optional, Union
|
|||
from llama_models.llama3.api.chat_format import ChatFormat
|
||||
from llama_models.llama3.api.tokenizer import Tokenizer
|
||||
from llama_models.sku_list import all_registered_models
|
||||
|
||||
from openai import OpenAI
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
|
@ -33,7 +32,6 @@ from llama_stack.apis.inference import (
|
|||
)
|
||||
from llama_stack.apis.models import Model, ModelType
|
||||
from llama_stack.providers.datatypes import ModelsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.inference.model_registry import (
|
||||
build_model_alias,
|
||||
ModelRegistryHelper,
|
||||
|
@ -54,7 +52,6 @@ from llama_stack.providers.utils.inference.prompt_adapter import (
|
|||
|
||||
from .config import VLLMInferenceAdapterConfig
|
||||
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
|
||||
|
||||
|
@ -105,7 +102,7 @@ class VLLMInferenceAdapter(Inference, ModelsProtocolPrivate):
|
|||
response_format: Optional[ResponseFormat] = None,
|
||||
tools: Optional[List[ToolDefinition]] = None,
|
||||
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = ToolPromptFormat.json,
|
||||
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
||||
stream: Optional[bool] = False,
|
||||
logprobs: Optional[LogProbConfig] = None,
|
||||
) -> AsyncGenerator:
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue