Update the "InterleavedTextMedia" type (#635)

## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
This commit is contained in:
Ashwin Bharambe 2024-12-17 11:18:31 -08:00 committed by GitHub
parent 10eb31badf
commit 8de8eb03c8
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
66 changed files with 1344 additions and 1801 deletions

View file

@ -46,13 +46,13 @@ def sample_documents():
async def register_memory_bank(
banks_impl: MemoryBanks, inference_model: str
banks_impl: MemoryBanks, embedding_model: str
) -> MemoryBank:
bank_id = f"test_bank_{uuid.uuid4().hex}"
return await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=inference_model,
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -61,11 +61,11 @@ async def register_memory_bank(
class TestMemory:
@pytest.mark.asyncio
async def test_banks_list(self, memory_stack, inference_model):
async def test_banks_list(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
# Register a test bank
registered_bank = await register_memory_bank(banks_impl, inference_model)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
try:
# Verify our bank shows up in list
@ -86,7 +86,7 @@ class TestMemory:
)
@pytest.mark.asyncio
async def test_banks_register(self, memory_stack, inference_model):
async def test_banks_register(self, memory_stack, embedding_model):
_, banks_impl = memory_stack
bank_id = f"test_bank_{uuid.uuid4().hex}"
@ -96,7 +96,7 @@ class TestMemory:
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=inference_model,
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -111,7 +111,7 @@ class TestMemory:
await banks_impl.register_memory_bank(
memory_bank_id=bank_id,
params=VectorMemoryBankParams(
embedding_model=inference_model,
embedding_model=embedding_model,
chunk_size_in_tokens=512,
overlap_size_in_tokens=64,
),
@ -129,14 +129,14 @@ class TestMemory:
@pytest.mark.asyncio
async def test_query_documents(
self, memory_stack, inference_model, sample_documents
self, memory_stack, embedding_model, sample_documents
):
memory_impl, banks_impl = memory_stack
with pytest.raises(ValueError):
await memory_impl.insert_documents("test_bank", sample_documents)
registered_bank = await register_memory_bank(banks_impl, inference_model)
registered_bank = await register_memory_bank(banks_impl, embedding_model)
await memory_impl.insert_documents(
registered_bank.memory_bank_id, sample_documents
)