forked from phoenix-oss/llama-stack-mirror
feat: Adding support for customizing chunk context in RAG insertion and querying (#2134)
# What does this PR do? his PR allows users to customize the template used for chunks when inserted into the context. Additionally, this enables metadata injection into the context of an LLM for RAG. This makes a naive and crude assumption that each chunk should include the metadata, this is obviously redundant when multiple chunks are returned from the same document. In order to remove any sort of duplication of chunks, we'd have to make much more significant changes so this is a reasonable first step that unblocks users requesting this enhancement in https://github.com/meta-llama/llama-stack/issues/1767. In the future, this can be extended to support citations. List of Changes: - `llama_stack/apis/tools/rag_tool.py` - Added `chunk_template` field in `RAGQueryConfig`. - Added `field_validator` to validate the `chunk_template` field in `RAGQueryConfig`. - Ensured the `chunk_template` field includes placeholders `{index}` and `{chunk.content}`. - Updated the `query` method to use the `chunk_template` for formatting chunk text content. - `llama_stack/providers/inline/tool_runtime/rag/memory.py` - Modified the `insert` method to pass `doc.metadata` for chunk creation. - Enhanced the `query` method to format results using `chunk_template` and exclude unnecessary metadata fields like `token_count`. - `llama_stack/providers/utils/memory/vector_store.py` - Updated `make_overlapped_chunks` to include metadata serialization and token count for both content and metadata. - Added error handling for metadata serialization issues. - `pyproject.toml` - Added `pydantic.field_validator` as a recognized `classmethod` decorator in the linting configuration. - `tests/integration/tool_runtime/test_rag_tool.py` - Refactored test assertions to separate `assert_valid_chunk_response` and `assert_valid_text_response`. - Added integration tests to validate `chunk_template` functionality with and without metadata inclusion. - Included a test case to ensure `chunk_template` validation errors are raised appropriately. - `tests/unit/rag/test_vector_store.py` - Added unit tests for `make_overlapped_chunks`, verifying chunk creation with overlapping tokens and metadata integrity. - Added tests to handle metadata serialization errors, ensuring proper exception handling. - `docs/_static/llama-stack-spec.html` - Added a new `chunk_template` field of type `string` with a default template for formatting retrieved chunks in RAGQueryConfig. - Updated the `required` fields to include `chunk_template`. - `docs/_static/llama-stack-spec.yaml` - Introduced `chunk_template` field with a default value for RAGQueryConfig. - Updated the required configuration list to include `chunk_template`. - `docs/source/building_applications/rag.md` - Documented the `chunk_template` configuration, explaining how to customize metadata formatting in RAG queries. - Added examples demonstrating the usage of the `chunk_template` field in RAG tool queries. - Highlighted default values for `RAG` agent configurations. # Resolves https://github.com/meta-llama/llama-stack/issues/1767 ## Test Plan Updated both `test_vector_store.py` and `test_rag_tool.py` and tested end-to-end with a script. I also tested the quickstart to enable this and specified this metadata: ```python document = RAGDocument( document_id="document_1", content=source, mime_type="text/html", metadata={"author": "Paul Graham", "title": "How to do great work"}, ) ``` Which produced the output below:  This highlights the usefulness of the additional metadata. Notice how the metadata is redundant for different chunks of the same document. I think we can update that in a subsequent PR. # Documentation I've added a brief comment about this in the documentation to outline this to users and updated the API documentation. --------- Signed-off-by: Francisco Javier Arceo <farceo@redhat.com>
This commit is contained in:
parent
ff247e35be
commit
8e7ab146f8
9 changed files with 230 additions and 29 deletions
20
docs/_static/llama-stack-spec.html
vendored
20
docs/_static/llama-stack-spec.html
vendored
|
@ -11294,24 +11294,34 @@
|
|||
"type": "object",
|
||||
"properties": {
|
||||
"query_generator_config": {
|
||||
"$ref": "#/components/schemas/RAGQueryGeneratorConfig"
|
||||
"$ref": "#/components/schemas/RAGQueryGeneratorConfig",
|
||||
"description": "Configuration for the query generator."
|
||||
},
|
||||
"max_tokens_in_context": {
|
||||
"type": "integer",
|
||||
"default": 4096
|
||||
"default": 4096,
|
||||
"description": "Maximum number of tokens in the context."
|
||||
},
|
||||
"max_chunks": {
|
||||
"type": "integer",
|
||||
"default": 5
|
||||
"default": 5,
|
||||
"description": "Maximum number of chunks to retrieve."
|
||||
},
|
||||
"chunk_template": {
|
||||
"type": "string",
|
||||
"default": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
|
||||
"description": "Template for formatting each retrieved chunk in the context. Available placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk content string), {metadata} (chunk metadata dict). Default: \"Result {index}\\nContent: {chunk.content}\\nMetadata: {metadata}\\n\""
|
||||
}
|
||||
},
|
||||
"additionalProperties": false,
|
||||
"required": [
|
||||
"query_generator_config",
|
||||
"max_tokens_in_context",
|
||||
"max_chunks"
|
||||
"max_chunks",
|
||||
"chunk_template"
|
||||
],
|
||||
"title": "RAGQueryConfig"
|
||||
"title": "RAGQueryConfig",
|
||||
"description": "Configuration for the RAG query generation."
|
||||
},
|
||||
"RAGQueryGeneratorConfig": {
|
||||
"oneOf": [
|
||||
|
|
19
docs/_static/llama-stack-spec.yaml
vendored
19
docs/_static/llama-stack-spec.yaml
vendored
|
@ -7794,18 +7794,37 @@ components:
|
|||
properties:
|
||||
query_generator_config:
|
||||
$ref: '#/components/schemas/RAGQueryGeneratorConfig'
|
||||
description: Configuration for the query generator.
|
||||
max_tokens_in_context:
|
||||
type: integer
|
||||
default: 4096
|
||||
description: Maximum number of tokens in the context.
|
||||
max_chunks:
|
||||
type: integer
|
||||
default: 5
|
||||
description: Maximum number of chunks to retrieve.
|
||||
chunk_template:
|
||||
type: string
|
||||
default: >
|
||||
Result {index}
|
||||
|
||||
Content: {chunk.content}
|
||||
|
||||
Metadata: {metadata}
|
||||
description: >-
|
||||
Template for formatting each retrieved chunk in the context. Available
|
||||
placeholders: {index} (1-based chunk ordinal), {chunk.content} (chunk
|
||||
content string), {metadata} (chunk metadata dict). Default: "Result {index}\nContent:
|
||||
{chunk.content}\nMetadata: {metadata}\n"
|
||||
additionalProperties: false
|
||||
required:
|
||||
- query_generator_config
|
||||
- max_tokens_in_context
|
||||
- max_chunks
|
||||
- chunk_template
|
||||
title: RAGQueryConfig
|
||||
description: >-
|
||||
Configuration for the RAG query generation.
|
||||
RAGQueryGeneratorConfig:
|
||||
oneOf:
|
||||
- $ref: '#/components/schemas/DefaultRAGQueryGeneratorConfig'
|
||||
|
|
|
@ -51,6 +51,7 @@ chunks = [
|
|||
"mime_type": "text/plain",
|
||||
"metadata": {
|
||||
"document_id": "doc1",
|
||||
"author": "Jane Doe",
|
||||
},
|
||||
},
|
||||
]
|
||||
|
@ -98,6 +99,17 @@ results = client.tool_runtime.rag_tool.query(
|
|||
)
|
||||
```
|
||||
|
||||
You can configure how the RAG tool adds metadata to the context if you find it useful for your application. Simply add:
|
||||
```python
|
||||
# Query documents
|
||||
results = client.tool_runtime.rag_tool.query(
|
||||
vector_db_ids=[vector_db_id],
|
||||
content="What do you know about...",
|
||||
query_config={
|
||||
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
|
||||
},
|
||||
)
|
||||
```
|
||||
### Building RAG-Enhanced Agents
|
||||
|
||||
One of the most powerful patterns is combining agents with RAG capabilities. Here's a complete example:
|
||||
|
@ -115,6 +127,12 @@ agent = Agent(
|
|||
"name": "builtin::rag/knowledge_search",
|
||||
"args": {
|
||||
"vector_db_ids": [vector_db_id],
|
||||
# Defaults
|
||||
"query_config": {
|
||||
"chunk_size_in_tokens": 512,
|
||||
"chunk_overlap_in_tokens": 0,
|
||||
"chunk_template": "Result {index}\nContent: {chunk.content}\nMetadata: {metadata}\n",
|
||||
},
|
||||
},
|
||||
}
|
||||
],
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue