forked from phoenix-oss/llama-stack-mirror
[memory refactor][5/n] Migrate all vector_io providers (#835)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
This commit is contained in:
parent
63f37f9b7c
commit
c9e5578151
78 changed files with 504 additions and 623 deletions
|
@ -14,8 +14,8 @@ from .config import ChromaRemoteImplConfig
|
|||
async def get_adapter_impl(
|
||||
config: ChromaRemoteImplConfig, deps: Dict[Api, ProviderSpec]
|
||||
):
|
||||
from .chroma import ChromaMemoryAdapter
|
||||
from .chroma import ChromaVectorIOAdapter
|
||||
|
||||
impl = ChromaMemoryAdapter(config, deps[Api.inference])
|
||||
impl = ChromaVectorIOAdapter(config, deps[Api.inference])
|
||||
await impl.initialize()
|
||||
return impl
|
||||
|
|
|
@ -6,25 +6,20 @@
|
|||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
from typing import List, Optional, Union
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.memory import (
|
||||
Chunk,
|
||||
Memory,
|
||||
MemoryBankDocument,
|
||||
QueryDocumentsResponse,
|
||||
)
|
||||
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaInlineImplConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
from .config import ChromaRemoteImplConfig
|
||||
|
||||
|
@ -61,7 +56,7 @@ class ChromaIndex(EmbeddingIndex):
|
|||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
) -> QueryChunksResponse:
|
||||
results = await maybe_await(
|
||||
self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
|
@ -85,19 +80,19 @@ class ChromaIndex(EmbeddingIndex):
|
|||
chunks.append(chunk)
|
||||
scores.append(1.0 / float(dist))
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
await maybe_await(self.client.delete_collection(self.collection.name))
|
||||
|
||||
|
||||
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig],
|
||||
inference_api: Api.inference,
|
||||
) -> None:
|
||||
log.info(f"Initializing ChromaMemoryAdapter with url: {config}")
|
||||
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
||||
|
@ -123,60 +118,58 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_memory_bank(
|
||||
async def register_vector_db(
|
||||
self,
|
||||
memory_bank: MemoryBank,
|
||||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
collection = await maybe_await(
|
||||
self.client.get_or_create_collection(
|
||||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.model_dump_json()},
|
||||
name=vector_db.identifier,
|
||||
metadata={"vector_db": vector_db.model_dump_json()},
|
||||
)
|
||||
)
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank, ChromaIndex(self.client, collection), self.inference_api
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db, ChromaIndex(self.client, collection), self.inference_api
|
||||
)
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def insert_documents(
|
||||
async def insert_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
embeddings: NDArray,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
await index.insert_documents(documents)
|
||||
await index.insert_chunks(chunks, embeddings)
|
||||
|
||||
async def query_documents(
|
||||
async def query_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
return await index.query_documents(query, params)
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
async def _get_and_cache_vector_db_index(
|
||||
self, vector_db_id: str
|
||||
) -> VectorDBWithIndex:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
|
||||
collection = await maybe_await(self.client.get_collection(bank_id))
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Llama Stack")
|
||||
collection = await maybe_await(self.client.get_collection(vector_db_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Bank {bank_id} not found in Chroma")
|
||||
index = BankWithIndex(
|
||||
bank, ChromaIndex(self.client, collection), self.inference_api
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
index = VectorDBWithIndex(
|
||||
vector_db, ChromaIndex(self.client, collection), self.inference_api
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
|
|
@ -12,21 +12,16 @@ from numpy.typing import NDArray
|
|||
from psycopg2 import sql
|
||||
from psycopg2.extras import execute_values, Json
|
||||
|
||||
from pydantic import BaseModel, parse_obj_as
|
||||
from pydantic import BaseModel, TypeAdapter
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.memory import (
|
||||
Chunk,
|
||||
Memory,
|
||||
MemoryBankDocument,
|
||||
QueryDocumentsResponse,
|
||||
)
|
||||
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType, VectorMemoryBank
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
||||
from .config import PGVectorConfig
|
||||
|
@ -50,20 +45,20 @@ def upsert_models(cur, keys_models: List[Tuple[str, BaseModel]]):
|
|||
"""
|
||||
)
|
||||
|
||||
values = [(key, Json(model.dict())) for key, model in keys_models]
|
||||
values = [(key, Json(model.model_dump())) for key, model in keys_models]
|
||||
execute_values(cur, query, values, template="(%s, %s)")
|
||||
|
||||
|
||||
def load_models(cur, cls):
|
||||
cur.execute("SELECT key, data FROM metadata_store")
|
||||
rows = cur.fetchall()
|
||||
return [parse_obj_as(cls, row["data"]) for row in rows]
|
||||
return [TypeAdapter(cls).validate_python(row["data"]) for row in rows]
|
||||
|
||||
|
||||
class PGVectorIndex(EmbeddingIndex):
|
||||
def __init__(self, bank: VectorMemoryBank, dimension: int, cursor):
|
||||
def __init__(self, vector_db: VectorDB, dimension: int, cursor):
|
||||
self.cursor = cursor
|
||||
self.table_name = f"vector_store_{bank.identifier}"
|
||||
self.table_name = f"vector_store_{vector_db.identifier}"
|
||||
|
||||
self.cursor.execute(
|
||||
f"""
|
||||
|
@ -85,7 +80,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
values.append(
|
||||
(
|
||||
f"{chunk.document_id}:chunk-{i}",
|
||||
Json(chunk.dict()),
|
||||
Json(chunk.model_dump()),
|
||||
embeddings[i].tolist(),
|
||||
)
|
||||
)
|
||||
|
@ -101,7 +96,7 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
) -> QueryChunksResponse:
|
||||
self.cursor.execute(
|
||||
f"""
|
||||
SELECT document, embedding <-> %s::vector AS distance
|
||||
|
@ -119,13 +114,13 @@ class PGVectorIndex(EmbeddingIndex):
|
|||
chunks.append(Chunk(**doc))
|
||||
scores.append(1.0 / float(dist))
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
self.cursor.execute(f"DROP TABLE IF EXISTS {self.table_name}")
|
||||
|
||||
|
||||
class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
class PGVectorVectorDBAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: PGVectorConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
@ -167,46 +162,45 @@ class PGVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
upsert_models(self.cursor, [(vector_db.identifier, vector_db)])
|
||||
|
||||
upsert_models(self.cursor, [(memory_bank.identifier, memory_bank)])
|
||||
index = PGVectorIndex(memory_bank, memory_bank.embedding_dimension, self.cursor)
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank, index, self.inference_api
|
||||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.cursor)
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db, index, self.inference_api
|
||||
)
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def insert_documents(
|
||||
async def insert_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
await index.insert_documents(documents)
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_documents(
|
||||
async def query_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
return await index.query_documents(query, params)
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
self.inference_api = inference_api
|
||||
async def _get_and_cache_vector_db_index(
|
||||
self, vector_db_id: str
|
||||
) -> VectorDBWithIndex:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
index = PGVectorIndex(bank, bank.embedding_dimension, self.cursor)
|
||||
self.cache[bank_id] = BankWithIndex(bank, index, self.inference_api)
|
||||
return self.cache[bank_id]
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
index = PGVectorIndex(vector_db, vector_db.embedding_dimension, self.cursor)
|
||||
self.cache[vector_db_id] = VectorDBWithIndex(
|
||||
vector_db, index, self.inference_api
|
||||
)
|
||||
return self.cache[vector_db_id]
|
||||
|
|
|
@ -13,19 +13,14 @@ from qdrant_client import AsyncQdrantClient, models
|
|||
from qdrant_client.models import PointStruct
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.memory import (
|
||||
Chunk,
|
||||
Memory,
|
||||
MemoryBankDocument,
|
||||
QueryDocumentsResponse,
|
||||
)
|
||||
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.remote.memory.qdrant.config import QdrantConfig
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
from .config import QdrantConfig
|
||||
|
||||
log = logging.getLogger(__name__)
|
||||
CHUNK_ID_KEY = "_chunk_id"
|
||||
|
@ -76,7 +71,7 @@ class QdrantIndex(EmbeddingIndex):
|
|||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
) -> QueryChunksResponse:
|
||||
results = (
|
||||
await self.client.query_points(
|
||||
collection_name=self.collection_name,
|
||||
|
@ -101,10 +96,10 @@ class QdrantIndex(EmbeddingIndex):
|
|||
chunks.append(chunk)
|
||||
scores.append(point.score)
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
|
||||
class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
class QdrantVectorDBAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(self, config: QdrantConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
self.client = AsyncQdrantClient(**self.config.model_dump(exclude_none=True))
|
||||
|
@ -117,58 +112,56 @@ class QdrantVectorMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
self.client.close()
|
||||
|
||||
async def register_memory_bank(
|
||||
async def register_vector_db(
|
||||
self,
|
||||
memory_bank: MemoryBank,
|
||||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=memory_bank,
|
||||
index=QdrantIndex(self.client, memory_bank.identifier),
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=QdrantIndex(self.client, vector_db.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
|
||||
self.cache[memory_bank.identifier] = index
|
||||
self.cache[vector_db.identifier] = index
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
async def _get_and_cache_vector_db_index(
|
||||
self, vector_db_id: str
|
||||
) -> Optional[VectorDBWithIndex]:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=QdrantIndex(client=self.client, collection_name=bank_id),
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=QdrantIndex(client=self.client, collection_name=vector_db.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def insert_documents(
|
||||
async def insert_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
await index.insert_documents(documents)
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_documents(
|
||||
async def query_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
return await index.query_documents(query, params)
|
||||
return await index.query_chunks(query, params)
|
||||
|
|
|
@ -4,19 +4,22 @@
|
|||
# This source code is licensed under the terms described in the LICENSE file in
|
||||
# the root directory of this source tree.
|
||||
|
||||
from llama_stack.apis.memory import Memory
|
||||
from llama_stack.apis.memory_banks import MemoryBank
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import VectorIO
|
||||
from .config import SampleConfig
|
||||
|
||||
|
||||
class SampleMemoryImpl(Memory):
|
||||
class SampleMemoryImpl(VectorIO):
|
||||
def __init__(self, config: SampleConfig):
|
||||
self.config = config
|
||||
|
||||
async def register_memory_bank(self, memory_bank: MemoryBank) -> None:
|
||||
# these are the memory banks the Llama Stack will use to route requests to this provider
|
||||
async def register_vector_db(self, vector_db: VectorDB) -> None:
|
||||
# these are the vector dbs the Llama Stack will use to route requests to this provider
|
||||
# perform validation here if necessary
|
||||
pass
|
||||
|
||||
async def initialize(self):
|
||||
pass
|
||||
|
||||
async def shutdown(self):
|
||||
pass
|
||||
|
|
|
@ -15,18 +15,13 @@ from weaviate.classes.init import Auth
|
|||
from weaviate.classes.query import Filter
|
||||
|
||||
from llama_stack.apis.common.content_types import InterleavedContent
|
||||
from llama_stack.apis.memory import (
|
||||
Chunk,
|
||||
Memory,
|
||||
MemoryBankDocument,
|
||||
QueryDocumentsResponse,
|
||||
)
|
||||
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
|
||||
from .config import WeaviateConfig, WeaviateRequestProviderData
|
||||
|
@ -49,7 +44,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
data_objects.append(
|
||||
wvc.data.DataObject(
|
||||
properties={
|
||||
"chunk_content": chunk.json(),
|
||||
"chunk_content": chunk.model_dump_json(),
|
||||
},
|
||||
vector=embeddings[i].tolist(),
|
||||
)
|
||||
|
@ -63,7 +58,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
) -> QueryChunksResponse:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
||||
results = collection.query.near_vector(
|
||||
|
@ -86,7 +81,7 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
chunks.append(chunk)
|
||||
scores.append(1.0 / doc.metadata.distance)
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self, chunk_ids: List[str]) -> None:
|
||||
collection = self.client.collections.get(self.collection_name)
|
||||
|
@ -96,9 +91,9 @@ class WeaviateIndex(EmbeddingIndex):
|
|||
|
||||
|
||||
class WeaviateMemoryAdapter(
|
||||
Memory,
|
||||
VectorIO,
|
||||
NeedsRequestProviderData,
|
||||
MemoryBanksProtocolPrivate,
|
||||
VectorDBsProtocolPrivate,
|
||||
):
|
||||
def __init__(self, config: WeaviateConfig, inference_api: Api.inference) -> None:
|
||||
self.config = config
|
||||
|
@ -129,20 +124,16 @@ class WeaviateMemoryAdapter(
|
|||
for client in self.client_cache.values():
|
||||
client.close()
|
||||
|
||||
async def register_memory_bank(
|
||||
async def register_vector_db(
|
||||
self,
|
||||
memory_bank: MemoryBank,
|
||||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
client = self._get_client()
|
||||
|
||||
# Create collection if it doesn't exist
|
||||
if not client.collections.exists(memory_bank.identifier):
|
||||
if not client.collections.exists(vector_db.identifier):
|
||||
client.collections.create(
|
||||
name=memory_bank.identifier,
|
||||
name=vector_db.identifier,
|
||||
vectorizer_config=wvc.config.Configure.Vectorizer.none(),
|
||||
properties=[
|
||||
wvc.config.Property(
|
||||
|
@ -152,52 +143,54 @@ class WeaviateMemoryAdapter(
|
|||
],
|
||||
)
|
||||
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank,
|
||||
WeaviateIndex(client=client, collection_name=memory_bank.identifier),
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db,
|
||||
WeaviateIndex(client=client, collection_name=vector_db.identifier),
|
||||
self.inference_api,
|
||||
)
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> Optional[BankWithIndex]:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
async def _get_and_cache_vector_db_index(
|
||||
self, vector_db_id: str
|
||||
) -> Optional[VectorDBWithIndex]:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
client = self._get_client()
|
||||
if not client.collections.exists(bank.identifier):
|
||||
raise ValueError(f"Collection with name `{bank.identifier}` not found")
|
||||
if not client.collections.exists(vector_db.identifier):
|
||||
raise ValueError(f"Collection with name `{vector_db.identifier}` not found")
|
||||
|
||||
index = BankWithIndex(
|
||||
bank=bank,
|
||||
index=WeaviateIndex(client=client, collection_name=bank_id),
|
||||
index = VectorDBWithIndex(
|
||||
vector_db=vector_db,
|
||||
index=WeaviateIndex(client=client, collection_name=vector_db.identifier),
|
||||
inference_api=self.inference_api,
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
||||
async def insert_documents(
|
||||
async def insert_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
await index.insert_documents(documents)
|
||||
await index.insert_chunks(chunks)
|
||||
|
||||
async def query_documents(
|
||||
async def query_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
if not index:
|
||||
raise ValueError(f"Bank {bank_id} not found")
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found")
|
||||
|
||||
return await index.query_documents(query, params)
|
||||
return await index.query_chunks(query, params)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue