forked from phoenix-oss/llama-stack-mirror
[memory refactor][5/n] Migrate all vector_io providers (#835)
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
This commit is contained in:
parent
63f37f9b7c
commit
c9e5578151
78 changed files with 504 additions and 623 deletions
|
@ -6,25 +6,20 @@
|
|||
import asyncio
|
||||
import json
|
||||
import logging
|
||||
from typing import List, Optional, Union
|
||||
from typing import Any, Dict, List, Optional, Union
|
||||
from urllib.parse import urlparse
|
||||
|
||||
import chromadb
|
||||
from numpy.typing import NDArray
|
||||
|
||||
from llama_stack.apis.inference import InterleavedContent
|
||||
from llama_stack.apis.memory import (
|
||||
Chunk,
|
||||
Memory,
|
||||
MemoryBankDocument,
|
||||
QueryDocumentsResponse,
|
||||
)
|
||||
from llama_stack.apis.memory_banks import MemoryBank, MemoryBankType
|
||||
from llama_stack.providers.datatypes import Api, MemoryBanksProtocolPrivate
|
||||
from llama_stack.providers.inline.memory.chroma import ChromaInlineImplConfig
|
||||
from llama_stack.apis.vector_dbs import VectorDB
|
||||
from llama_stack.apis.vector_io import Chunk, QueryChunksResponse, VectorIO
|
||||
from llama_stack.providers.datatypes import Api, VectorDBsProtocolPrivate
|
||||
from llama_stack.providers.inline.vector_io.chroma import ChromaInlineImplConfig
|
||||
from llama_stack.providers.utils.memory.vector_store import (
|
||||
BankWithIndex,
|
||||
EmbeddingIndex,
|
||||
VectorDBWithIndex,
|
||||
)
|
||||
from .config import ChromaRemoteImplConfig
|
||||
|
||||
|
@ -61,7 +56,7 @@ class ChromaIndex(EmbeddingIndex):
|
|||
|
||||
async def query(
|
||||
self, embedding: NDArray, k: int, score_threshold: float
|
||||
) -> QueryDocumentsResponse:
|
||||
) -> QueryChunksResponse:
|
||||
results = await maybe_await(
|
||||
self.collection.query(
|
||||
query_embeddings=[embedding.tolist()],
|
||||
|
@ -85,19 +80,19 @@ class ChromaIndex(EmbeddingIndex):
|
|||
chunks.append(chunk)
|
||||
scores.append(1.0 / float(dist))
|
||||
|
||||
return QueryDocumentsResponse(chunks=chunks, scores=scores)
|
||||
return QueryChunksResponse(chunks=chunks, scores=scores)
|
||||
|
||||
async def delete(self):
|
||||
await maybe_await(self.client.delete_collection(self.collection.name))
|
||||
|
||||
|
||||
class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
||||
class ChromaVectorIOAdapter(VectorIO, VectorDBsProtocolPrivate):
|
||||
def __init__(
|
||||
self,
|
||||
config: Union[ChromaRemoteImplConfig, ChromaInlineImplConfig],
|
||||
inference_api: Api.inference,
|
||||
) -> None:
|
||||
log.info(f"Initializing ChromaMemoryAdapter with url: {config}")
|
||||
log.info(f"Initializing ChromaVectorIOAdapter with url: {config}")
|
||||
self.config = config
|
||||
self.inference_api = inference_api
|
||||
|
||||
|
@ -123,60 +118,58 @@ class ChromaMemoryAdapter(Memory, MemoryBanksProtocolPrivate):
|
|||
async def shutdown(self) -> None:
|
||||
pass
|
||||
|
||||
async def register_memory_bank(
|
||||
async def register_vector_db(
|
||||
self,
|
||||
memory_bank: MemoryBank,
|
||||
vector_db: VectorDB,
|
||||
) -> None:
|
||||
assert (
|
||||
memory_bank.memory_bank_type == MemoryBankType.vector.value
|
||||
), f"Only vector banks are supported {memory_bank.memory_bank_type}"
|
||||
|
||||
collection = await maybe_await(
|
||||
self.client.get_or_create_collection(
|
||||
name=memory_bank.identifier,
|
||||
metadata={"bank": memory_bank.model_dump_json()},
|
||||
name=vector_db.identifier,
|
||||
metadata={"vector_db": vector_db.model_dump_json()},
|
||||
)
|
||||
)
|
||||
self.cache[memory_bank.identifier] = BankWithIndex(
|
||||
memory_bank, ChromaIndex(self.client, collection), self.inference_api
|
||||
self.cache[vector_db.identifier] = VectorDBWithIndex(
|
||||
vector_db, ChromaIndex(self.client, collection), self.inference_api
|
||||
)
|
||||
|
||||
async def unregister_memory_bank(self, memory_bank_id: str) -> None:
|
||||
await self.cache[memory_bank_id].index.delete()
|
||||
del self.cache[memory_bank_id]
|
||||
async def unregister_vector_db(self, vector_db_id: str) -> None:
|
||||
await self.cache[vector_db_id].index.delete()
|
||||
del self.cache[vector_db_id]
|
||||
|
||||
async def insert_documents(
|
||||
async def insert_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
documents: List[MemoryBankDocument],
|
||||
ttl_seconds: Optional[int] = None,
|
||||
vector_db_id: str,
|
||||
chunks: List[Chunk],
|
||||
embeddings: NDArray,
|
||||
) -> None:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
await index.insert_documents(documents)
|
||||
await index.insert_chunks(chunks, embeddings)
|
||||
|
||||
async def query_documents(
|
||||
async def query_chunks(
|
||||
self,
|
||||
bank_id: str,
|
||||
vector_db_id: str,
|
||||
query: InterleavedContent,
|
||||
params: Optional[Dict[str, Any]] = None,
|
||||
) -> QueryDocumentsResponse:
|
||||
index = await self._get_and_cache_bank_index(bank_id)
|
||||
) -> QueryChunksResponse:
|
||||
index = await self._get_and_cache_vector_db_index(vector_db_id)
|
||||
|
||||
return await index.query_documents(query, params)
|
||||
return await index.query_chunks(query, params)
|
||||
|
||||
async def _get_and_cache_bank_index(self, bank_id: str) -> BankWithIndex:
|
||||
if bank_id in self.cache:
|
||||
return self.cache[bank_id]
|
||||
async def _get_and_cache_vector_db_index(
|
||||
self, vector_db_id: str
|
||||
) -> VectorDBWithIndex:
|
||||
if vector_db_id in self.cache:
|
||||
return self.cache[vector_db_id]
|
||||
|
||||
bank = await self.memory_bank_store.get_memory_bank(bank_id)
|
||||
if not bank:
|
||||
raise ValueError(f"Bank {bank_id} not found in Llama Stack")
|
||||
collection = await maybe_await(self.client.get_collection(bank_id))
|
||||
vector_db = await self.vector_db_store.get_vector_db(vector_db_id)
|
||||
if not vector_db:
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Llama Stack")
|
||||
collection = await maybe_await(self.client.get_collection(vector_db_id))
|
||||
if not collection:
|
||||
raise ValueError(f"Bank {bank_id} not found in Chroma")
|
||||
index = BankWithIndex(
|
||||
bank, ChromaIndex(self.client, collection), self.inference_api
|
||||
raise ValueError(f"Vector DB {vector_db_id} not found in Chroma")
|
||||
index = VectorDBWithIndex(
|
||||
vector_db, ChromaIndex(self.client, collection), self.inference_api
|
||||
)
|
||||
self.cache[bank_id] = index
|
||||
self.cache[vector_db_id] = index
|
||||
return index
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue