# What does this PR do?
Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs
for the distributions.
## Test Plan
At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.
The semantics of an Update on resources is very tricky to reason about
especially for memory banks and models. The best way to go forward here
is for the user to unregister and register a new resource. We don't have
a compelling reason to support update APIs.
Tests:
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"chroma" --env CHROMA_HOST=localhost --env CHROMA_PORT=8000
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m
"pgvector" --env PGVECTOR_DB=postgres --env PGVECTOR_USER=postgres --env
PGVECTOR_PASSWORD=mysecretpassword --env PGVECTOR_HOST=0.0.0.0
$CONDA_PREFIX/bin/pytest -v -s -m "ollama"
llama_stack/providers/tests/inference/test_model_registration.py
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
# What does this PR do?
- API updates: change schema to dataset_schema for register_dataset for
resolving pydantic naming conflict
- Note: this OpenAPI update will be synced with
llama-stack-client-python SDK.
cc @dineshyv
## Test Plan
```
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
- add inline:: prefix for localfs provider
## Test Plan
```
llama stack run
datasetio:
- provider_id: localfs-0
provider_type: inline::localfs
config: {}
```
```
pytest -v -s -m meta_reference_eval_fireworks_inference eval/test_eval.py
pytest -v -s -m localfs datasetio/test_datasetio.py
```
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
This PR kills the notion of "pure passthrough" remote providers. You
cannot specify a single provider you must specify a whole distribution
(stack) as remote.
This PR also significantly fixes / upgrades testing infrastructure so
you can now test against a remotely hosted stack server by just doing
```bash
pytest -s -v -m remote test_agents.py \
--inference-model=Llama3.1-8B-Instruct --safety-shield=Llama-Guard-3-1B \
--env REMOTE_STACK_URL=http://localhost:5001
```
Also fixed `test_agents_persistence.py` (which was broken) and killed
some deprecated testing functions.
## Test Plan
All the tests.
This PR changes the way model id gets translated to the final model name
that gets passed through the provider.
Major changes include:
1) Providers are responsible for registering an object and as part of
the registration returning the object with the correct provider specific
name of the model provider_resource_id
2) To help with the common look ups different names a new ModelLookup
class is created.
Tested all inference providers including together, fireworks, vllm,
ollama, meta reference and bedrock
# What does this PR do?
This PR kills the notion of "ShieldType". The impetus for this is the
realization:
> Why is keyword llama-guard appearing so many times everywhere,
sometimes with hyphens, sometimes with underscores?
Now that we have a notion of "provider specific resource identifiers"
and "user specific aliases" for those and the fact that this works with
models ("Llama3.1-8B-Instruct" <> "fireworks/llama-3pv1-..."), we can
follow the same rules for Shields.
So each Safety provider can make up a notion of identifiers it has
registered. This already happens with Bedrock correctly. We just
generalize it for Llama Guard, Prompt Guard, etc.
For Llama Guard, we further simplify by just adopting the underlying
model name itself as the identifier! No confusion necessary.
While doing this, I noticed a bug in our DistributionRegistry where we
weren't scoping identifiers by type. Fixed.
## Feature/Issue validation/testing/test plan
Ran (inference, safety, memory, agents) tests with ollama and fireworks
providers.
# What does this PR do?
This is a follow-up to #425. That PR allows for specifying models in the
registry, but each entry needs to look like:
```yaml
- identifier: ...
provider_id: ...
provider_resource_identifier: ...
```
This is headache-inducing.
The current PR makes this situation better by adopting the shape of our
APIs. Namely, we need the user to only specify `model-id`. The rest
should be optional and figured out by the Stack. You can always override
it.
Here's what example `ollama` "full stack" registry looks like (we still
need to kill or simplify shield_type crap):
```yaml
models:
- model_id: Llama3.2-3B-Instruct
- model_id: Llama-Guard-3-1B
shields:
- shield_id: llama_guard
shield_type: llama_guard
```
## Test Plan
See test plan for #425. Re-ran it.
# What does this PR do?
This PR brings back the facility to not force registration of resources
onto the user. This is not just annoying but actually not feasible
sometimes. For example, you may have a Stack which boots up with private
providers for inference for models A and B. There is no way for the user
to actually know which model is being served by these providers now (to
be able to register it.)
How will this avoid the users needing to do registration? In a follow-up
diff, I will make sure I update the sample run.yaml files so they list
the models served by the distributions explicitly. So when users do
`llama stack build --template <...>` and run it, their distributions
come up with the right set of models they expect.
For self-hosted distributions, it also allows us to have a place to
explicit list the models that need to be served to make the "complete"
stack (including safety, e.g.)
## Test Plan
Started ollama locally with two lightweight models: Llama3.2-3B-Instruct
and Llama-Guard-3-1B.
Updated all the tests including agents. Here's the tests I ran so far:
```bash
pytest -s -v -m "fireworks and llama_3b" test_text_inference.py::TestInference \
--env FIREWORKS_API_KEY=...
pytest -s -v -m "ollama and llama_3b" test_text_inference.py::TestInference
pytest -s -v -m ollama test_safety.py
pytest -s -v -m faiss test_memory.py
pytest -s -v -m ollama test_agents.py \
--inference-model=Llama3.2-3B-Instruct --safety-model=Llama-Guard-3-1B
```
Found a few bugs here and there pre-existing that these test runs fixed.
* migrate evals to resource
* remove listing of providers's evals
* change the order of params in register
* fix after rebase
* linter fix
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
* migrate dataset to resource
* remove auto discovery
* remove listing of providers's datasets
* fix after rebase
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
Splits the meta-reference safety implementation into three distinct providers:
- inline::llama-guard
- inline::prompt-guard
- inline::code-scanner
Note that this PR is a backward incompatible change to the llama stack server. I have added deprecation_error field to ProviderSpec -- the server reads it and immediately barfs. This is used to direct the user with a specific message on what action to perform. An automagical "config upgrade" is a bit too much work to implement right now :/
(Note that we will be gradually prefixing all inline providers with inline:: -- I am only doing this for this set of new providers because otherwise existing configuration files will break even more badly.)
* init
* working bedrock tests
* bedrock test for inference fixes
* use env vars for bedrock guardrail vars
* add register in meta reference
* use correct shield impl in meta ref
* dont add together fixture
* right naming
* minor updates
* improved registration flow
* address feedback
---------
Co-authored-by: Dinesh Yeduguru <dineshyv@fb.com>
* Enable vision models for Together and Fireworks
* Works with ollama 0.4.0 pre-release with the vision model
* localize media for meta_reference inference
* Fix
* Significantly simpler and malleable test setup
* convert memory tests
* refactor fixtures and add support for composable fixtures
* Fix memory to use the newer fixture organization
* Get agents tests working
* Safety tests work
* yet another refactor to make this more general
now it accepts --inference-model, --safety-model options also
* get multiple providers working for meta-reference (for inference + safety)
* Add README.md
---------
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
Added support for structured output in the API and added a reference implementation for meta-reference.
A few notes:
* Two formats are specified in the API: Json schema and EBNF based grammar
* Implementation only supports Json for now
We use lm-format-enhancer to provide the implementation right now but may change this especially because BNF grammars aren't supported by that library.
Fireworks has support for structured output and Together has limited supported for it too. Subsequent PRs will add these changes. We would like all our inference providers to provide structured output for llama models since it is an extremely important and highly sought-after need by the developers.