Commit graph

25 commits

Author SHA1 Message Date
Sébastien Han
7710b2f43b
chore: removed unused class (#2268)
Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-26 08:41:37 -07:00
ehhuang
5844c2da68
feat: add list responses API (#2233)
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.

## Test Plan
Added integration/unit tests.
2025-05-23 13:16:48 -07:00
Sébastien Han
1a529705da
chore: more mypy fixes (#2029)
# What does this PR do?

Mainly tried to cover the entire llama_stack/apis directory, we only
have one left. Some excludes were just noop.

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-05-06 09:52:31 -07:00
Ihar Hrachyshka
9e6561a1ec
chore: enable pyupgrade fixes (#1806)
# What does this PR do?

The goal of this PR is code base modernization.

Schema reflection code needed a minor adjustment to handle UnionTypes
and collections.abc.AsyncIterator. (Both are preferred for latest Python
releases.)

Note to reviewers: almost all changes here are automatically generated
by pyupgrade. Some additional unused imports were cleaned up. The only
change worth of note can be found under `docs/openapi_generator` and
`llama_stack/strong_typing/schema.py` where reflection code was updated
to deal with "newer" types.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-05-01 14:23:50 -07:00
Sébastien Han
2ffa2b77ed
refactor: extract pagination logic into shared helper function (#1770)
# What does this PR do?

Move pagination logic from LocalFS and HuggingFace implementations into
a common helper function to ensure consistent pagination behavior across
providers. This reduces code duplication and centralizes pagination
logic in one place.


## Test Plan

Run this script:

```
from llama_stack_client import LlamaStackClient

# Initialize the client
client = LlamaStackClient(base_url="http://localhost:8321")

# Register a dataset
response = client.datasets.register(
    purpose="eval/messages-answer",  # or "eval/question-answer" or "post-training/messages"
    source={"type": "uri", "uri": "huggingface://datasets/llamastack/simpleqa?split=train"},
    dataset_id="my_dataset",  # optional, will be auto-generated if not provided
    metadata={"description": "My evaluation dataset"},  # optional
)

# Verify the dataset was registered by listing all datasets
datasets = client.datasets.list()
print(f"Registered datasets: {[d.identifier for d in datasets]}")

# You can then access the data using the datasetio API
# rows = client.datasets.iterrows(dataset_id="my_dataset", start_index=1, limit=2)
rows = client.datasets.iterrows(dataset_id="my_dataset")
print(f"Data: {rows.data}")
```

And play with `start_index` and `limit`.

[//]: # (## Documentation)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-03-31 13:08:29 -07:00
Rashmi Pawar
1a73f8305b
feat: Add nemo customizer (#1448)
# What does this PR do?

This PR adds support for NVIDIA's NeMo Customizer API to the Llama Stack
post-training module. The integration enables users to fine-tune models
using NVIDIA's cloud-based customization service through a consistent
Llama Stack interface.


[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
Yet to be done

Things pending under this PR:

- [x] Integration of fine-tuned model(new checkpoint) for inference with
nvidia llm distribution
- [x] distribution integration of API
- [x] Add test cases for customizer(In Progress)
- [x] Documentation

```

LLAMA_STACK_BASE_URL=http://localhost:5002 pytest -v tests/client-sdk/post_training/test_supervised_fine_tuning.py 

============================================================================================================================================================================ test session starts =============================================================================================================================================================================
platform linux -- Python 3.10.0, pytest-8.3.4, pluggy-1.5.0 -- /home/ubuntu/llama-stack/.venv/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.0', 'Platform': 'Linux-6.8.0-1021-gcp-x86_64-with-glibc2.35', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'nbval': '0.11.0', 'metadata': '3.1.1', 'anyio': '4.8.0', 'html': '4.1.1', 'asyncio': '0.25.3'}}
rootdir: /home/ubuntu/llama-stack
configfile: pyproject.toml
plugins: nbval-0.11.0, metadata-3.1.1, anyio-4.8.0, html-4.1.1, asyncio-0.25.3
asyncio: mode=strict, asyncio_default_fixture_loop_scope=None
collected 2 items                                                                                                                                                                                                                                                                                                                                                            

tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_post_training_provider_registration[txt=8B] PASSED                                                                                                                                                                                                                                                 [ 50%]
tests/client-sdk/post_training/test_supervised_fine_tuning.py::test_list_training_jobs[txt=8B] PASSED                                                                                                                                                                                                                                                                  [100%]

======================================================================================================================================================================== 2 passed, 1 warning in 0.10s ========================================================================================================================================================================
```
cc: @mattf @dglogo @sumitb

---------

Co-authored-by: Ubuntu <ubuntu@llama-stack-customizer-dev-inst-2tx95fyisatvlic4we8hidx5tfj.us-central1-a.c.brevdevprod.internal>
2025-03-25 11:01:10 -07:00
Xi Yan
baf68c665c
fix: fix jobs api literal return type (#1757)
# What does this PR do?

- We cannot directly return a literal type

> Note: this is not final jobs API change

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
<img width="837" alt="image"
src="https://github.com/user-attachments/assets/18a17561-35f9-443d-987d-54afdd6ff40c"
/>


[//]: # (## Documentation)
2025-03-21 14:04:21 -07:00
Ihar Hrachyshka
41bd350539
chore: Don't set type variables from register_schema() (#1713)
# What does this PR do?

Don't set type variables from register_schema().

`mypy` is not happy about it since type variables are calculated at
runtime and hence the typing hints are not available during static
analysis.

Good news is there is no good reason to set the variables from the
return type.

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>

Signed-off-by: Ihar Hrachyshka <ihar.hrachyshka@gmail.com>
2025-03-19 20:29:00 -07:00
Sébastien Han
9bbe34694d
ci: add mypy for static type checking (#1101)
# What does this PR do?

- Enable mypy to run in the CI on a subset of the repository
- Fix a few mypy errors
- Run mypy from pre-commit

Signed-off-by: Sébastien Han <seb@redhat.com>
 
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-21 13:15:40 -08:00
Ashwin Bharambe
314ee09ae3
chore: move all Llama Stack types from llama-models to llama-stack (#1098)
llama-models should have extremely minimal cruft. Its sole purpose
should be didactic -- show the simplest implementation of the llama
models and document the prompt formats, etc.

This PR is the complement to
https://github.com/meta-llama/llama-models/pull/279

## Test Plan

Ensure all `llama` CLI `model` sub-commands work:

```bash
llama model list
llama model download --model-id ...
llama model prompt-format -m ...
```

Ran tests:
```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=fireworks pytest -s -v inference/
LLAMA_STACK_CONFIG=fireworks pytest -s -v vector_io/
LLAMA_STACK_CONFIG=fireworks pytest -s -v agents/
```

Create a fresh venv `uv venv && source .venv/bin/activate` and run
`llama stack build --template fireworks --image-type venv` followed by
`llama stack run together --image-type venv` <-- the server runs

Also checked that the OpenAPI generator can run and there is no change
in the generated files as a result.

```bash
cd docs/openapi_generator
sh run_openapi_generator.sh
```
2025-02-14 09:10:59 -08:00
Sébastien Han
e4a1579e63
build: format codebase imports using ruff linter (#1028)
# What does this PR do?

- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff

Signed-off-by: Sébastien Han <seb@redhat.com>

[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])

## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]

[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)

Signed-off-by: Sébastien Han <seb@redhat.com>
2025-02-13 10:06:21 -08:00
Xi Yan
94051cfe9e
fix ImageContentItem to take base64 string as image.data (#909)
# What does this PR do?

- Discussion in
https://github.com/meta-llama/llama-stack/pull/906#discussion_r1936260819

- image.data should accept base64 string as input instead of binary
bytes, change prompt_adapter to account for that.

## Test Plan

```
pytest -v tests/client-sdk/inference/test_inference.py
```

with test in https://github.com/meta-llama/llama-stack/pull/906

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-30 15:58:23 -08:00
Ashwin Bharambe
0d96070af9
Update OpenAPI generator to add param and field documentation (#896)
We desperately need to document our APIs. This is the basic requirement
of having a Spec :)

This PR updates the OpenAPI generator so documentation for request
parameters and object fields can be properly added to the OpenAPI specs.
From there, this should get picked by Stainless, etc.

## Test Plan:

Updated client-sdk (See
https://github.com/meta-llama/llama-stack-client-python/pull/104) and
then ran:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=../../llama_stack/templates/fireworks/run.yaml pytest -s -v inference/test_inference.py agents/test_agents.py
```
2025-01-29 10:04:30 -08:00
Ashwin Bharambe
07b87365ab
[inference api] modify content types so they follow a more standard structure (#841)
Some small updates to the inference types to make them more standard

Specifically:
- image data is now located in a "image" subkey
- similarly tool call data is located in a "tool_call" subkey

The pattern followed is `dict(type="foo", foo=<...>)`
2025-01-22 12:16:18 -08:00
Dinesh Yeduguru
53b5f6b24a
add json_schema_type to ParamType deps (#808)
# What does this PR do?

Add missing json_schema_type annotation to ParamType deps
2025-01-17 11:02:25 -08:00
Ashwin Bharambe
b78e6675ea llama-stack version alpha -> v1 2025-01-15 05:58:09 -08:00
Botao Chen
25c1d9b037
[post training] define llama stack post training dataset format (#717)
## context
In this PR, we defined 2 llama stack dataset formats (instruct, dialog)

- For instruct dataset format, the column schema will be
[chat_completion_input, expected_answer], which is consistent with the
eval data format. This dataset format is the abstract of single turn QA
style post training data
- For dialog dataset format, the column schema will be [dialog], which
is a list of user messages and assistant messages that interleave
together. During training, the whole list will be the model input and
the loss is calculated on assistant messages only. This dataset format
is the abstract of multi turn chat style post training data

## changes
- defined the 2 llama stack dataset formats
- an adapter to convert llama stack dataset format to torchtune dataset
format
- move dataset format validation to post training level instead of
torchtune level since it's not specific to torchtune
- add localfs as datasetio provider


## test 
instruct format
- use https://huggingface.co/datasets/llamastack/evals as dataset and
the training works as expected
<img width="1443" alt="Screenshot 2025-01-09 at 5 15 14 PM"
src="https://github.com/user-attachments/assets/2c37a936-c67a-4726-90e0-23fa0ba7000f"
/>

- use my generated local dataset and the training works as expected

<img width="1617" alt="Screenshot 2025-01-09 at 5 19 11 PM"
src="https://github.com/user-attachments/assets/0bdccbbf-bac2-472a-a365-15213e49bbfa"
/>


dialog format
- use my generated local dataset and the training works as expected
<img width="1588" alt="Screenshot 2025-01-09 at 5 23 16 PM"
src="https://github.com/user-attachments/assets/893915ba-41a3-4d51-948b-e872060ecede"
/>
2025-01-14 12:48:49 -08:00
Ashwin Bharambe
aced2ce07e introduce and use a generic ContentDelta 2025-01-13 23:16:53 -08:00
Xi Yan
694adb1501
[bugfix] fix broken vision inference, change serialization for bytes (#693)
# What does this PR do?

- vision inference via image as binary bytes fails with serialization
error
- add custom serialization for "bytes" in `_URLOrData`

## Test Plan

```
pytest -v -s -k "fireworks" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py::TestVisionModelInference::test_vision_chat_completion_non_streaming
```

**Before**
<img width="1020" alt="image"
src="https://github.com/user-attachments/assets/3803fcee-32ee-4b8e-ba46-47848e1a6247"
/>


**After**
<img width="1018" alt="image"
src="https://github.com/user-attachments/assets/f3e3156e-88ce-40fd-ad1b-44b87f376e03"
/>

<img width="822" alt="image"
src="https://github.com/user-attachments/assets/1898696f-95c0-4694-8a47-8f51c7de0e86"
/>



## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-30 13:57:41 -08:00
Ashwin Bharambe
f1d6cb22d7 Update URL type to avoid string-ifying and creating complexity 2024-12-17 22:50:11 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Botao Chen
c294a01c4b
[2/n][torchtune integration] implement job management and return training artifacts (#593)
### Context 
In this PR, we 
- Implement the post training job management and get training artifacts
apis
  - get_training_jobs
  - get_training_job_status
  - get_training_job_artifacts
- get_training_job_logstream is deleted since the trace can be directly
accessed by UI with Jaeger
https://llama-stack.readthedocs.io/en/latest/building_applications/telemetry.html#jaeger-to-visualize-traces
- Refactor the post training and training types definition to make them
more intuitive.
- Rewrite the checkpointer to make it compatible with llama-stack file
system and can be recognized during inference


### Test
Unit test
`pytest llama_stack/providers/tests/post_training/test_post_training.py
-m "torchtune_post_training_huggingface_datasetio" -v -s --tb=short
--disable-warnings`

<img width="1506" alt="Screenshot 2024-12-10 at 4 06 17 PM"
src="https://github.com/user-attachments/assets/16225029-bdb7-48c4-9d13-e580cc769c0a">


e2e test with client side call

<img width="888" alt="Screenshot 2024-12-10 at 4 09 44 PM"
src="https://github.com/user-attachments/assets/de375e4c-ef67-4dcc-a045-4037d9489191">
2024-12-13 15:00:04 -08:00
Xi Yan
abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00
Xi Yan
e45f121c77
[Evals API] [1/n] Initial API (#287)
* type system api

* datasets api

* fix

* datasetio api

* kill reward scoring

* scoring functions + evals

* move jobs, fix errors
2024-10-22 09:31:19 -07:00
Ashwin Bharambe
9487ad8294
API Updates (#73)
* API Keys passed from Client instead of distro configuration

* delete distribution registry

* Rename the "package" word away

* Introduce a "Router" layer for providers

Some providers need to be factorized and considered as thin routing
layers on top of other providers. Consider two examples:

- The inference API should be a routing layer over inference providers,
  routed using the "model" key
- The memory banks API is another instance where various memory bank
  types will be provided by independent providers (e.g., a vector store
  is served by Chroma while a keyvalue memory can be served by Redis or
  PGVector)

This commit introduces a generalized routing layer for this purpose.

* update `apis_to_serve`

* llama_toolchain -> llama_stack

* Codemod from llama_toolchain -> llama_stack

- added providers/registry
- cleaned up api/ subdirectories and moved impls away
- restructured api/api.py
- from llama_stack.apis.<api> import foo should work now
- update imports to do llama_stack.apis.<api>
- update many other imports
- added __init__, fixed some registry imports
- updated registry imports
- create_agentic_system -> create_agent
- AgenticSystem -> Agent

* Moved some stuff out of common/; re-generated OpenAPI spec

* llama-toolchain -> llama-stack (hyphens)

* add control plane API

* add redis adapter + sqlite provider

* move core -> distribution

* Some more toolchain -> stack changes

* small naming shenanigans

* Removing custom tool and agent utilities and moving them client side

* Move control plane to distribution server for now

* Remove control plane from API list

* no codeshield dependency randomly plzzzzz

* Add "fire" as a dependency

* add back event loggers

* stack configure fixes

* use brave instead of bing in the example client

* add init file so it gets packaged

* add init files so it gets packaged

* Update MANIFEST

* bug fix

---------

Co-authored-by: Hardik Shah <hjshah@fb.com>
Co-authored-by: Xi Yan <xiyan@meta.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
2024-09-17 19:51:35 -07:00