# What does this PR do?
create a new dataset BFCL_v3 from
https://gorilla.cs.berkeley.edu/blogs/13_bfcl_v3_multi_turn.html
overall each question asks the model to perform a task described in
natural language, and additionally a set of available functions and
their schema are given for the model to choose from. the model is
required to write the function call form including function name and
parameters , to achieve the stated purpose. the results are validated
against provided ground truth, to make sure that the generated function
call and the ground truth function call are syntactically and
semantically equivalent, by checking their AST .
## Test Plan
start server by
```
llama stack run ./llama_stack/templates/ollama/run.yaml
```
then send traffic
```
llama-stack-client eval run-benchmark "bfcl" --model-id meta-llama/Llama-3.2-3B-Instruct --output-dir /tmp/gpqa --num-examples 2
```
[//]: # (## Documentation)
# What does this PR do?
- Configured ruff linter to automatically fix import sorting issues.
- Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are
applied.
- Enabled the 'I' selection to focus on import-related linting rules.
- Ran the linter, and formatted all codebase imports accordingly.
- Removed the black dep from the "dev" group since we use ruff
Signed-off-by: Sébastien Han <seb@redhat.com>
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
[Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.*]
[//]: # (## Documentation)
[//]: # (- [ ] Added a Changelog entry if the change is significant)
Signed-off-by: Sébastien Han <seb@redhat.com>
Lint check in main branch is failing. This fixes the lint check after we
moved to ruff in https://github.com/meta-llama/llama-stack/pull/921. We
need to move to a `ruff.toml` file as well as fixing and ignoring some
additional checks.
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
## context
In this PR, we defined 2 llama stack dataset formats (instruct, dialog)
- For instruct dataset format, the column schema will be
[chat_completion_input, expected_answer], which is consistent with the
eval data format. This dataset format is the abstract of single turn QA
style post training data
- For dialog dataset format, the column schema will be [dialog], which
is a list of user messages and assistant messages that interleave
together. During training, the whole list will be the model input and
the loss is calculated on assistant messages only. This dataset format
is the abstract of multi turn chat style post training data
## changes
- defined the 2 llama stack dataset formats
- an adapter to convert llama stack dataset format to torchtune dataset
format
- move dataset format validation to post training level instead of
torchtune level since it's not specific to torchtune
- add localfs as datasetio provider
## test
instruct format
- use https://huggingface.co/datasets/llamastack/evals as dataset and
the training works as expected
<img width="1443" alt="Screenshot 2025-01-09 at 5 15 14 PM"
src="https://github.com/user-attachments/assets/2c37a936-c67a-4726-90e0-23fa0ba7000f"
/>
- use my generated local dataset and the training works as expected
<img width="1617" alt="Screenshot 2025-01-09 at 5 19 11 PM"
src="https://github.com/user-attachments/assets/0bdccbbf-bac2-472a-a365-15213e49bbfa"
/>
dialog format
- use my generated local dataset and the training works as expected
<img width="1588" alt="Screenshot 2025-01-09 at 5 23 16 PM"
src="https://github.com/user-attachments/assets/893915ba-41a3-4d51-948b-e872060ecede"
/>
# What does this PR do?
- there's no value in keeping data schema validation logic in a
DataSchemaValidatorMixin
- move into data schema validation logic into standalone utils
## Test Plan
```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
## Sources
Please link relevant resources if necessary.
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
# What does this PR do?
- See https://github.com/meta-llama/llama-stack/pull/666 &
https://github.com/meta-llama/llama-stack/pull/668
- Refactor BaseScoringFn to be just a minimal interface, add new
RegistrableBaseScoring
- Refactor data schema check
- To separately evaluate retrieval component in RAG, we will have
scoring functions needing "context" column additionally.
- Refactor braintrust eval (more scoring fn added & tested in following
PR)
## Test Plan
```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
```
<img width="847" alt="image"
src="https://github.com/user-attachments/assets/d099cb2d-6f9c-4bdf-9d0d-f388cf758c0f"
/>
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
<img width="850" alt="image"
src="https://github.com/user-attachments/assets/dce28fc3-0493-4d34-820a-567260873cc8"
/>
## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.