Commit graph

294 commits

Author SHA1 Message Date
Botao Chen
d9f75cc98f
Import from the right path (#708)
Import BaseModel and Field from pydantic
2025-01-02 13:15:31 -08:00
Botao Chen
750604c7af
[Post Training] Fix missing import (#705)
## context
Post training apis are broken after the import * refactor
https://github.com/meta-llama/llama-stack/pull/689. This PR is adding
the missing import back

## Test
Issue a post training request from client and the training finishes
successfully

<img width="1101" alt="Screenshot 2025-01-02 at 12 18 45 PM"
src="https://github.com/user-attachments/assets/8c781459-f340-4021-85e1-fc68b1dcb8c8"
/>

<img width="782" alt="Screenshot 2025-01-02 at 12 18 52 PM"
src="https://github.com/user-attachments/assets/14b04b7d-e5c7-4662-8fa6-748446ad3511"
/>
2025-01-02 13:08:20 -08:00
Xi Yan
3a269c4635
[rag evals] refactor & add ability to eval retrieval + generation in agentic eval pipeline (#664)
# What does this PR do?

- See https://github.com/meta-llama/llama-stack/pull/666 &
https://github.com/meta-llama/llama-stack/pull/668

- Refactor BaseScoringFn to be just a minimal interface, add new
RegistrableBaseScoring
- Refactor data schema check
- To separately evaluate retrieval component in RAG, we will have
scoring functions needing "context" column additionally.
- Refactor braintrust eval (more scoring fn added & tested in following
PR)

## Test Plan

```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py
```

<img width="847" alt="image"
src="https://github.com/user-attachments/assets/d099cb2d-6f9c-4bdf-9d0d-f388cf758c0f"
/>

```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio eval/test_eval.py
```
<img width="850" alt="image"
src="https://github.com/user-attachments/assets/dce28fc3-0493-4d34-820a-567260873cc8"
/>



## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-02 11:21:33 -08:00
Aidan Do
49ad168336
[#407] Agents: Avoid calling tools that haven't been explicitly enabled (#637)
# What does this PR do?

Contributes to issue (#407)

tl;dr - @subramen was getting a 500 error because llama-stack called
code_interpreter when it never was defined as a tool.

Prevents failures like:

<img width="544" alt="image"
src="https://github.com/user-attachments/assets/392683d2-4670-414c-aaba-07ebc006d748"
/>

```
# Server side
Traceback (most recent call last):
  File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/distribution/server/server.py", line 206, in sse_generator
    async for item in await event_gen:
  File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agents.py", line 138, in _create_agent_turn_streaming
    async for event in agent.create_and_execute_turn(request):
  File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 179, in create_and_execute_turn
    async for chunk in self.run(
  File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 252, in run
    async for res in self._run(
  File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 560, in _run
    result_messages = await execute_tool_call_maybe(
  File "/opt/conda/envs/llamastack-vllm-stack/lib/python3.10/site-packages/llama_stack/providers/impls/meta_reference/agents/agent_instance.py", line 824, in execute_tool_call_maybe
    assert name in tools_dict, f"Tool {name} not found"
AssertionError: Tool code_interpreter not found
```

Instead, if the model hallucinates, we just let it hallucinate and let
the client know.

<img width="544" alt="image"
src="https://github.com/user-attachments/assets/d2418583-d45a-48db-b476-45a584f2986f"
/>

## Test Plan

<details>
<summary>pytest llama_stack/providers/tests/agents/test_agents.py -k
ollama</summary>

```
llama stack build --template ollama --image-type conda 
conda activate llamastack-ollama
```

```
llama_stack/providers/tests/agents/test_agents.py ..Fss                                                                                          [100%]

======================================================================= FAILURES =======================================================================
_________________________________________ TestAgents.test_rag_agent_as_attachments[--ollama][ollama] __________________________________________
llama_stack/providers/tests/agents/test_agents.py:261: in test_rag_agent_as_attachments
    turn_response = [
llama_stack/providers/tests/agents/test_agents.py:261: in <listcomp>
    turn_response = [
llama_stack/providers/inline/agents/meta_reference/agents.py:153: in _create_agent_turn_streaming
    async for event in agent.create_and_execute_turn(request):
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:179: in create_and_execute_turn
    async for chunk in self.run(
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:250: in run
    async for res in self._run(
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:363: in _run
    rag_context, bank_ids = await self._retrieve_context(
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:698: in _retrieve_context
    bank_id = await self._ensure_memory_bank(session_id)
llama_stack/providers/inline/agents/meta_reference/agent_instance.py:653: in _ensure_memory_bank
    await self.memory_banks_api.register_memory_bank(
llama_stack/providers/utils/telemetry/trace_protocol.py:101: in async_wrapper
    result = await method(self, *args, **kwargs)
llama_stack/distribution/routers/routing_tables.py:312: in register_memory_bank
    raise ValueError(
E   ValueError: Embeddings are now served via Inference providers. Please upgrade your run.yaml to include inline::sentence-transformer as an additional inference provider. See https://github.com/meta-llama/llama-stack/blob/main/llama_stack/templates/together/run.yaml for an example.
=============================================================== short test summary info ================================================================
FAILED llama_stack/providers/tests/agents/test_agents.py::TestAgents::test_rag_agent_as_attachments[--ollama] - ValueError: Embeddings are now served via Inference providers. Please upgrade your run.yaml to include inline::sentence-transformer as an additiona...
========================================== 1 failed, 2 passed, 2 skipped, 20 deselected, 5 warnings in 14.24s ==========================================
```

Unrelated test is failing (also failing on main)
</details>

<details>
<summary>Manual</summary>

Using this client code:
7ebc257b27/client.py

<img width="544" alt="Screenshot 2024-12-16 at 17 41 31"
src="https://github.com/user-attachments/assets/7425deaf-c94a-4dda-a635-922728e373f1"
/>

</details>

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2025-01-02 09:21:35 -08:00
Xi Yan
3c72c034e6
[remove import *] clean up import *'s (#689)
# What does this PR do?

- as title, cleaning up `import *`'s
- upgrade tests to make them more robust to bad model outputs
- remove import *'s in llama_stack/apis/* (skip __init__ modules)
<img width="465" alt="image"
src="https://github.com/user-attachments/assets/d8339c13-3b40-4ba5-9c53-0d2329726ee2"
/>

- run `sh run_openapi_generator.sh`, no types gets affected

## Test Plan

### Providers Tests

**agents**
```
pytest -v -s llama_stack/providers/tests/agents/test_agents.py -m "together" --safety-shield meta-llama/Llama-Guard-3-8B --inference-model meta-llama/Llama-3.1-405B-Instruct-FP8
```

**inference**
```bash
# meta-reference
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

# together
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.1-8B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py
pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.2-11B-Vision-Instruct" ./llama_stack/providers/tests/inference/test_vision_inference.py

pytest ./llama_stack/providers/tests/inference/test_prompt_adapter.py 
```

**safety**
```
pytest -v -s llama_stack/providers/tests/safety/test_safety.py -m together --safety-shield meta-llama/Llama-Guard-3-8B
```

**memory**
```
pytest -v -s llama_stack/providers/tests/memory/test_memory.py -m "sentence_transformers" --env EMBEDDING_DIMENSION=384
```

**scoring**
```
pytest -v -s -m llm_as_judge_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py --judge-model meta-llama/Llama-3.2-3B-Instruct
pytest -v -s -m basic_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
pytest -v -s -m braintrust_scoring_together_inference llama_stack/providers/tests/scoring/test_scoring.py
```


**datasetio**
```
pytest -v -s -m localfs llama_stack/providers/tests/datasetio/test_datasetio.py
pytest -v -s -m huggingface llama_stack/providers/tests/datasetio/test_datasetio.py
```


**eval**
```
pytest -v -s -m meta_reference_eval_together_inference llama_stack/providers/tests/eval/test_eval.py
pytest -v -s -m meta_reference_eval_together_inference_huggingface_datasetio llama_stack/providers/tests/eval/test_eval.py
```

### Client-SDK Tests
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk
```

### llama-stack-apps
```
PORT=5000
LOCALHOST=localhost

python -m examples.agents.hello $LOCALHOST $PORT
python -m examples.agents.inflation $LOCALHOST $PORT
python -m examples.agents.podcast_transcript $LOCALHOST $PORT
python -m examples.agents.rag_as_attachments $LOCALHOST $PORT
python -m examples.agents.rag_with_memory_bank $LOCALHOST $PORT
python -m examples.safety.llama_guard_demo_mm $LOCALHOST $PORT
python -m examples.agents.e2e_loop_with_custom_tools $LOCALHOST $PORT

# Vision model
python -m examples.interior_design_assistant.app
python -m examples.agent_store.app $LOCALHOST $PORT
```

### CLI
```
which llama
llama model prompt-format -m Llama3.2-11B-Vision-Instruct
llama model list
llama stack list-apis
llama stack list-providers inference

llama stack build --template ollama --image-type conda
```

### Distributions Tests
**ollama**
```
llama stack build --template ollama --image-type conda
ollama run llama3.2:1b-instruct-fp16
llama stack run ./llama_stack/templates/ollama/run.yaml --env INFERENCE_MODEL=meta-llama/Llama-3.2-1B-Instruct
```

**fireworks**
```
llama stack build --template fireworks --image-type conda
llama stack run ./llama_stack/templates/fireworks/run.yaml
```

**together**
```
llama stack build --template together --image-type conda
llama stack run ./llama_stack/templates/together/run.yaml
```

**tgi**
```
llama stack run ./llama_stack/templates/tgi/run.yaml --env TGI_URL=http://0.0.0.0:5009 --env INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-27 15:45:44 -08:00
Botao Chen
bae197c37e
Fix post training apis broken by torchtune release (#674)
There is a torchtune release this morning
https://github.com/pytorch/torchtune/releases/tag/v0.5.0 and breaks post
training apis

## test 
spinning up server and the post training works again after the fix 
<img width="1314" alt="Screenshot 2024-12-20 at 4 08 54 PM"
src="https://github.com/user-attachments/assets/dfae724d-ebf0-4846-9715-096efa060cee"
/>


## Note
We need to think hard of how to avoid this happen again and have a fast
follow up on this after holidays
2024-12-20 16:12:02 -08:00
Botao Chen
06cb0c837e
[torchtune integration] post training + eval (#670)
## What does this PR do?

- Add related Apis in experimental-post-training template to enable eval
on the finetuned checkpoint in the template
- A small bug fix on meta reference eval
- A small error handle improvement on post training 


## Test Plan
From client side issued an E2E post training request
https://github.com/meta-llama/llama-stack-client-python/pull/70 and get
eval results successfully

<img width="1315" alt="Screenshot 2024-12-20 at 12 06 59 PM"
src="https://github.com/user-attachments/assets/a09bd524-59ae-490c-908f-2e36ccf27c0a"
/>
2024-12-20 13:43:13 -08:00
Dinesh Yeduguru
c8be0bf1c9
Tools API with brave and MCP providers (#639)
This PR adds a new Tools api and adds two tool runtime providers: brave
and MCP.

Test plan:
```
curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{ "tool_group_id": "simple_tool",
  "tool_group": {
    "type": "model_context_protocol",
    "endpoint": {"uri": "http://localhost:56000/sse"}
  },
  "provider_id": "model-context-protocol"
}'

 curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{
  "tool_group_id": "search", "provider_id": "brave-search",
  "tool_group": {
    "type": "user_defined",
    "tools": [
      {
        "name": "brave_search",
        "description": "A web search tool",
        "parameters": [
          {
            "name": "query",
            "parameter_type": "string",
            "description": "The query to search"
          }
        ],
        "metadata": {},
        "tool_prompt_format": "json"
      }
    ]
  }
}'

 curl -X GET http://localhost:5000/alpha/tools/list | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   662  100   662    0     0   333k      0 --:--:-- --:--:-- --:--:--  646k
[
  {
    "identifier": "brave_search",
    "provider_resource_id": "brave_search",
    "provider_id": "brave-search",
    "type": "tool",
    "tool_group": "search",
    "description": "A web search tool",
    "parameters": [
      {
        "name": "query",
        "parameter_type": "string",
        "description": "The query to search"
      }
    ],
    "metadata": {},
    "tool_prompt_format": "json"
  },
  {
    "identifier": "fetch",
    "provider_resource_id": "fetch",
    "provider_id": "model-context-protocol",
    "type": "tool",
    "tool_group": "simple_tool",
    "description": "Fetches a website and returns its content",
    "parameters": [
      {
        "name": "url",
        "parameter_type": "string",
        "description": "URL to fetch"
      }
    ],
    "metadata": {
      "endpoint": "http://localhost:56000/sse"
    },
    "tool_prompt_format": "json"
  }
]

curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' \
-d '{
    "tool_name": "fetch",
    "args": {
        "url": "http://google.com/"
    }
}'

 curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' -H 'X-LlamaStack-ProviderData: {"api_key": "<KEY>"}' \
-d '{
    "tool_name": "brave_search",
    "args": {
        "query": "who is meta ceo"
    }
}'
```
2024-12-19 21:25:17 -08:00
Ashwin Bharambe
540fc4d717
Fix Meta reference GPU implementation (#663)
By performing in-place mutations, we lost. Never in life do that.
2024-12-19 14:09:45 -08:00
Ashwin Bharambe
f19eb8eee3 Update types in parallel_utils for meta-refernece-gpu impl 2024-12-19 13:58:41 -08:00
Xi Yan
5be2ea37b1 fix context_retriever model->model_id 2024-12-19 12:52:00 -08:00
Dinesh Yeduguru
03607a68c7
remove unused telemetry related code for console (#659)
# What does this PR do?
Remove unused code since this now exists in the meta reference provider
as a sink


## Test Plan

llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-19 11:21:11 -08:00
Botao Chen
36b4fe02cc
[4/n][torchtune integration] support lazy load model during inference (#620)
## What does this PR do?
In this PR, we refactor the meta reference inference logic to support 
- load the model during registering model instead of during spinning up
server
- support inference finetuned model checkpoint on top of native llama
model

## Why need these changes
To solve the existing pain points that 
- user cannot lazy load the model and hot switch the inference
checkpoint after spinning up the server
- this blocks us doing inference and eval on the same sever for a
finetuned checkpoint after post training
- user cannot do inference on a finetuned checkpoint on top of native
llama models

## Expect user experience change
- The inference model won't be loaded when spinning up server. Instead,
it will be loaded during register model. If user add the model as models
resource in run.yaml, it will be registered and loaded automatically
when starting server. There is an optional flag 'skip_initialize' in
model metadata to skip model loading during registration.
- There is an optional flag 'llama_model' in model metadata to identify
the base model of the Model class for validation and initialize model
arch. model identifier no longer needs to be a native llama model
- the default inference model name updates from
'meta-llama/Llama-3.2-3B-Instruct' to 'Llama3.2-3B-Instruct'
- It aligns with the checkpoint folder name after running 'llama model
download'
- It aligns with the descriptor name defined in llama-models SKU list
bf5b0c4fe7/models/datatypes.py (L95)


## test
run python llama_stack/scripts/distro_codegen.py


**run unit test**
- torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.1-8B-Instruct"
./llama_stack/providers/tests/inference/test_text_inference.py
- torchrun $CONDA_PREFIX/bin/pytest -v -s -k "meta_reference"
--inference-model="Llama3.1-8B-Instruct"
./llama_stack/providers/tests/inference/test_model_registration.py


**test post training experience**
on server side run: llama stack run
llama_stack/templates/experimental-post-training/run.yaml
server is spinning up without model loaded

<img width="812" alt="Screenshot 2024-12-17 at 1 24 50 PM"
src="https://github.com/user-attachments/assets/ce1f606b-3b6f-452f-b48e-b3761ffd90f3"
/>

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 models register
Llama3.2-3B-Instruct
register model successfully and the model is loaded 
<img width="1111" alt="Screenshot 2024-12-17 at 1 26 30 PM"
src="https://github.com/user-attachments/assets/56e02131-cf7d-4de5-8f63-fbdcb8c55c26"
/>


<img width="1541" alt="Screenshot 2024-12-17 at 1 26 09 PM"
src="https://github.com/user-attachments/assets/a83255a1-20f5-40a2-af51-55641410a115"
/>

if add "skip_initialize" in metadata, model is registered but isn't
loaded

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 inference chat-completion
--message "hello, what model are you?"

Inference the model succesfully
<img width="1121" alt="Screenshot 2024-12-17 at 1 27 33 PM"
src="https://github.com/user-attachments/assets/8e708545-3fe7-4a73-8754-1470fa5f1e75"
/>

**test inference experience**
run: llama stack run llama_stack/templates/meta-reference-gpu/run.yaml
model is loaded since the model is in resouce list in run.yaml 
<img width="1537" alt="Screenshot 2024-12-17 at 1 30 19 PM"
src="https://github.com/user-attachments/assets/5c8af817-66eb-43f8-bf4c-f5e24b0a12c6"
/>

on client side, run: llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 inference chat-completion
--message "hello, what model are you?"
inference successfully 
<img width="1123" alt="Screenshot 2024-12-17 at 1 31 08 PM"
src="https://github.com/user-attachments/assets/471809aa-c65e-46dc-a37e-7094fb857f97"
/>



## inference on a finetuned model
**register a finetuned model that finetuned by post training api
(torchtune)**
- the model is registered and loaded successfully 
- the model is shown up in the model list 
<img width="974" alt="Screenshot 2024-12-18 at 3 56 33 PM"
src="https://github.com/user-attachments/assets/2994b4f5-4fa9-40c6-acc6-4b971479f3e2"
/>

**run inference**

<img width="977" alt="Screenshot 2024-12-18 at 3 57 59 PM"
src="https://github.com/user-attachments/assets/d117abbc-b2a0-41d8-a028-1a13128787b2"
/>
2024-12-18 16:30:53 -08:00
Ashwin Bharambe
0fb4b7de6f Add more debugging logs to when llama guard fails 2024-12-17 18:52:02 -08:00
Ashwin Bharambe
b7a7caa9a8 Fix conversion to RawMessage everywhere 2024-12-17 14:00:43 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Xi Yan
99f331f5c8
[bugfix] no shield_call when there's no shields configured (#642)
# What does this PR do?

**Why**
- When AgentConfig has no `input_shields` / `output_shields` defined, we
still outputs a shield_call step with violation=None. This is impossible
to distinguish the case b/w (1) no violation from running shields v.s.
(2) no shields call

**What**
- We should not have a shield_call step when no `input_shields` /
`output_shields` are defined.

- Also removes a never reached try/catch code block in agent loop.
`run_multiple_shields` is never called in the try block (verified by
stacktrace print)

**Side Note**
- pre-commit fix

## Test Plan

Tested w/ DirectClient via:
https://gist.github.com/yanxi0830/b48f2a53b6f5391b9ff1e39992bc05b3

**No Shields**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/67319370-329f-4954-bd16-d21ce54c6ebf"
/>

**With Input + Output Shields**
<img width="854" alt="image"
src="https://github.com/user-attachments/assets/75ab1bee-3ba9-4549-ab51-23210be83da7"
/>

**Input Shields Only**
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/1897206b-13dd-4ea5-92c2-b39bf68e9286"
/>


E2E pytest
```
LLAMA_STACK_BASE_URL=http://localhost:5000 pytest -v ./tests/client-sdk/agents/test_agents.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-17 11:10:19 -08:00
Ashwin Bharambe
2e5bfcd42a
Update Telemetry API so OpenAPI generation can work (#640)
We cannot use recursive types because not only does our OpenAPI
generator not like them, even if it did, it is not easy for all client
languages to automatically construct proper APIs (especially considering
garbage collection) around them. For now, we can return a `Dict[str,
SpanWithStatus]` instead of `SpanWithChildren` and rely on the client to
reconstruct the tree.

Also fixed a super subtle issue with the OpenAPI generation process
(monkey-patching of json_schema_type wasn't working because of import
reordering.)
2024-12-16 13:00:14 -08:00
Botao Chen
20383bfea5
[3/n][torchtune integration] add validation logic (#600)
## What does this PR do?
- add validation logic in SFT recipe (validation loss and perplexity)
- add progress bar in both training and validation to better track the
progress on server side (eval has the similar logic)


## Test Plan
validation logic shows up in the Checkpoint training_metric part  
<img width="799" alt="Screenshot 2024-12-12 at 3 21 52 PM"
src="https://github.com/user-attachments/assets/36330ffe-0555-4b2d-93f0-9487dfdf7b4e"
/>

progress bar shows up as 
<img width="476" alt="Screenshot 2024-12-12 at 3 38 11 PM"
src="https://github.com/user-attachments/assets/77306fa2-cb9c-460f-8efc-b41bbe424a7d"
/>
expected
2024-12-13 16:35:06 -08:00
Botao Chen
c294a01c4b
[2/n][torchtune integration] implement job management and return training artifacts (#593)
### Context 
In this PR, we 
- Implement the post training job management and get training artifacts
apis
  - get_training_jobs
  - get_training_job_status
  - get_training_job_artifacts
- get_training_job_logstream is deleted since the trace can be directly
accessed by UI with Jaeger
https://llama-stack.readthedocs.io/en/latest/building_applications/telemetry.html#jaeger-to-visualize-traces
- Refactor the post training and training types definition to make them
more intuitive.
- Rewrite the checkpointer to make it compatible with llama-stack file
system and can be recognized during inference


### Test
Unit test
`pytest llama_stack/providers/tests/post_training/test_post_training.py
-m "torchtune_post_training_huggingface_datasetio" -v -s --tb=short
--disable-warnings`

<img width="1506" alt="Screenshot 2024-12-10 at 4 06 17 PM"
src="https://github.com/user-attachments/assets/16225029-bdb7-48c4-9d13-e580cc769c0a">


e2e test with client side call

<img width="888" alt="Screenshot 2024-12-10 at 4 09 44 PM"
src="https://github.com/user-attachments/assets/de375e4c-ef67-4dcc-a045-4037d9489191">
2024-12-13 15:00:04 -08:00
Dinesh Yeduguru
516e1a3e59
add embedding model by default to distribution templates (#617)
# What does this PR do?
Adds the sentence transformer provider and the `all-MiniLM-L6-v2`
embedding model to the default models to register in the run.yaml for
all providers.

## Test Plan
llama stack build --template together --image-type conda
llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
2024-12-13 12:48:00 -08:00
Botao Chen
aeb76390fc
[1/n] torchtune <> llama-stack integration skeleton (#540)
### Context 
This is the 1st of series PRs that integrate torchtune with llama-stack
as meta reference post-training implementation. For MVP, we will focus
on single device LoRA SFT.

Though this PR is still WIP, we want to get early feedback on the high
level design of this skeleton while still working on several details

### Scope
To limit the scope of this PR, we focus on the skeleton of the
implementation.

**What are included?**
- refine the post-training SFT apis
- skeleton of supervised_fine_tune implementation. We verified that we
can call the supervised_fine_tune API successfully from llama stack
client SDK (client side PR:
https://github.com/meta-llama/llama-stack-client-python/pull/51)
- a very basic single device LoRA training recipe based on torchtune
core components
- parity check with torchtune library and post training api unit test

**What are not includes?**
- implementation of other job management, get training artifacts apis
(separate PR)
- refactor the meta reference inference logic to support eval on
finetuned model (separate PR)
- several necessary functionality in the training recipe such as
logging, validation etc (separate PR)
- interop with telemetry for tracing and metrics logging, currently
temporarily log to local disk (separate PR)

### Testing
**e2e test**
Although we haven't added detailed testing and numerical parity check
with torchtune yet, we did a simple E2E test from client to server
1. setup server with` llama stack build --template
experimental-post-training --image-type conda` and `llama stack run
experimental-post-training `
2. On client, run `llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 post_training
supervised_fine_tune`
3. Training finishes successfully. On server side, get the finetune
checkpoints under output dir. On client side, get the job uuid

server 
<img width="1110" alt="Screenshot 2024-12-02 at 5 52 32 PM"
src="https://github.com/user-attachments/assets/b548eb90-7a9b-4edc-a858-ee237cc4361d">

client 
<img width="807" alt="Screenshot 2024-12-02 at 5 52 37 PM"
src="https://github.com/user-attachments/assets/1138ffa8-4698-40fa-b190-3d7b99646838">

**parity check**
torchtune dataloader output and llama-stack post training dataloader
output are same
<img width="1116" alt="Screenshot 2024-12-04 at 8 18 46 PM"
src="https://github.com/user-attachments/assets/5e295cdc-4c24-4ea6-82c0-ca96ef1bd6ee">

torchtune LoRA SFT and llama-stack post training LoRA SFT on alpaca
dataset with llama3.2 3B instruct model are numerical match

<img width="860" alt="Screenshot 2024-12-04 at 8 17 01 PM"
src="https://github.com/user-attachments/assets/c05cf0a8-c674-4d2e-9f0a-c5d01b2dca99">

<img width="1049" alt="Screenshot 2024-12-04 at 8 17 06 PM"
src="https://github.com/user-attachments/assets/b911d4e2-e7b1-41a9-b62c-d75529b6d443">

**unit test ** 
![Uploading Screenshot 2024-12-09 at 1.35.10 PM.png…]()
2024-12-13 11:05:35 -08:00
Dinesh Yeduguru
96e158eaac
Make embedding generation go through inference (#606)
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models

This is a merge from #589 and #598
2024-12-12 11:47:50 -08:00
Ashwin Bharambe
b7cb06f004
Allow using an "inline" version of Chroma using PersistentClient (#567)
The same code is used (inside providers/remote/memory/chroma/chroma.py)
but it is driven by separate configurations and changes which Chroma
client to use. Note that the dependencies are separate
(`chromadb-client` vs `chromadb` -- the latter is a _much_ heavier
package.)

```
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_DB_PATH=/tmp/chroma_test
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_URL=http://localhost:6001
```
2024-12-11 16:02:04 -08:00
Xi Yan
a4bcfb8bba
[/scoring] add ability to define aggregation functions for scoring functions & refactors (#597)
# What does this PR do?

- Add ability to define aggregation functions for scoring functions via
`ScoringFnParams`
- Supported by `basic` / `regex_parser` / `llm_as_judge` scoring
functions


## Test Plan

```
pytest -v -s -m basic_scoring_together_inference scoring/test_scoring.py
```
<img width="855" alt="image"
src="https://github.com/user-attachments/assets/12db8e6e-2ad4-462e-b9b9-70ba6c050a6c">


```
pytest -v -s -m llm_as_judge_scoring_together_inference scoring/test_scoring.py
```
<img width="858" alt="image"
src="https://github.com/user-attachments/assets/bf806676-6f5e-456d-be9f-f81a26d1df19">



**Example Response** (`basic`)
<img width="863" alt="image"
src="https://github.com/user-attachments/assets/0e57a49c-8386-45cc-8fa9-3e61aaa9a3be">

**Example Response** (`llm-as-judge`)
<img width="854" alt="image"
src="https://github.com/user-attachments/assets/38065bc2-b724-47ed-9535-79b6099c4362">


## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-11 10:03:42 -08:00
Dinesh Yeduguru
e128f2547a
add tracing back to the lib cli (#595)
Adds back all the tracing logic removed from library client. also adds
back the logging to agent_instance.
2024-12-11 08:44:20 -08:00
Dinesh Yeduguru
2e3d3a62a5 Revert "add tracing to library client (#591)"
This reverts commit bc1fddf1df.
2024-12-10 08:50:20 -08:00
Dinesh Yeduguru
686f8d5b8d remove info logging in agent instance 2024-12-10 08:40:42 -08:00
Ashwin Bharambe
a4d8a6009a
Fixes for library client (#587)
Library client used _server_ side types which was no bueno. The fix here
is not the completely correct fix but it is good for enough and for the
demo notebook.
2024-12-09 17:14:37 -08:00
Dinesh Yeduguru
bc1fddf1df
add tracing to library client (#591) 2024-12-09 15:46:26 -08:00
Xi Yan
ab7145a04f minor refactor 2024-12-09 15:43:12 -08:00
Xi Yan
cd40a5fdbf
update template run.yaml to include openai api key for braintrust (#590)
# What does this PR do?

**Why**
- braintrust provider needs OpenAI API Key set in config for
DirectClient to work

## Test Plan
```
python llama_stack/scripts/distro_codegen.py 
```

<img width="340" alt="image"
src="https://github.com/user-attachments/assets/eae38296-f880-40f0-9a9e-46a12038db64">

- set API key in client via provider_data
<img width="907" alt="image"
src="https://github.com/user-attachments/assets/3d74cd7c-dc7e-4a42-8a40-c22f19b0c534">


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-09 15:40:59 -08:00
Ashwin Bharambe
5335393fe3 Avoid deleting temp directory between agent turns
This brings an interesting aspect -- we need to maintain session-level
tempdir state (!) since the model was told there was some resource at a
given location that it needs to maintain
2024-12-08 22:25:37 -08:00
Ashwin Bharambe
e951852848 Miscellaneous fixes around telemetry, library client and run yaml autogen
Also add a `venv` image-type for llama stack build
2024-12-08 20:40:22 -08:00
Ashwin Bharambe
224e62290f kill unnecessarily large imports from telemetry init 2024-12-08 16:57:16 -08:00
Dinesh Yeduguru
c543bc0745
Console span processor improvements (#577)
Makes the console span processor output spans in less prominent way and
highlight the logs based on severity.


![Screenshot 2024-12-06 at 11 26
46 AM](https://github.com/user-attachments/assets/c3a1b051-85db-4b71-b7a5-7bab5a26f072)
2024-12-06 11:46:16 -08:00
Ashwin Bharambe
084ec337af Small cleanup of console logs 2024-12-06 10:29:24 -08:00
Adrian Cole
27a27152cd
Renames otel config from jaeger to otel (#569)
# What does this PR do?

#525 introduced a telemetry configuration named jaeger, but what it
really is pointing to is an OTLP HTTP endpoint which is supported by
most servers in the ecosystem, including raw opentelemetry collectors,
several APMs, and even https://github.com/ymtdzzz/otel-tui

I chose to rename this to "otel" as it will bring in more people to the
ecosystem vs feeling it only works with jaeger. Later, we can use the
[standard
ENV](https://opentelemetry.io/docs/specs/otel/protocol/exporter/) to
configure this if we like so that you can override things with variables
people might expect.

Note: I also added to the README that you have to install conda.
Depending on experience level of the user, and especially with miniforge
vs other ways, I felt this helps.

## Test Plan

I would like to test this, but actually got a little lost. The previous
PRs referenced yaml which doesn't seem published anywhere. It would be
nice to have a pre-canned setup that uses ollama and turns on otel, but
would also appreciate a hand on instructions meanwhile.

## Sources

https://github.com/meta-llama/llama-stack/pull/525

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [x] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.

---------

Signed-off-by: Adrian Cole <adrian.cole@elastic.co>
2024-12-06 10:16:42 -08:00
Ashwin Bharambe
392be5f6dc Reduce log volume a bit, needs more work 2024-12-05 21:40:21 -08:00
Dinesh Yeduguru
c23363d561
Add ability to query and export spans to dataset (#574)
This PR adds two new methods to the telemetry API:
1) Gives the ability to query spans directly instead of first querying
traces and then using that to get spans
2) Another method save_spans_to_dataset, which builds on the query spans
to save it on dataset.

This give the ability to saves spans that are part of an agent session
to a dataset.

The unique aspect of this API is that we dont require each provider of
telemetry to implement this method. Hence, its implemented in the
protocol class itself. This required the protocol check to be slightly
modified.
2024-12-05 21:07:30 -08:00
Ashwin Bharambe
cdfc98cf08 add a warning at least for when bwrap is not available for code execution 2024-12-05 20:54:28 -08:00
Ashwin Bharambe
66440e2c20 Add missing init file 2024-12-05 17:44:14 -08:00
Dinesh Yeduguru
fcd6449519
Telemetry API redesign (#525)
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session

Addresses #509

## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000


 curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
  "attribute_filters": [
    {
      "key": "session_id",
      "op": "eq",
      "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
  "limit": 100,
  "offset": 0,
  "order_by": ["start_time"]
}' | jq .
[
  {
    "trace_id": "6902f54b83b4b48be18a6f422b13e16f",
    "root_span_id": "5f37b85543afc15a",
    "start_time": "2024-12-04T08:08:30.501587",
    "end_time": "2024-12-04T08:08:36.026463"
  },
  {
    "trace_id": "92227dac84c0615ed741be393813fb5f",
    "root_span_id": "af7c5bb46665c2c8",
    "start_time": "2024-12-04T08:08:36.031170",
    "end_time": "2024-12-04T08:08:41.693301"
  },
  {
    "trace_id": "7d578a6edac62f204ab479fba82f77b6",
    "root_span_id": "1d935e3362676896",
    "start_time": "2024-12-04T08:08:41.695204",
    "end_time": "2024-12-04T08:08:47.228016"
  },
  {
    "trace_id": "dbd767d76991bc816f9f078907dc9ff2",
    "root_span_id": "f5a7ee76683b9602",
    "start_time": "2024-12-04T08:08:47.234578",
    "end_time": "2024-12-04T08:08:53.189412"
  }
]


curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   875  100   790  100    85  18462   1986 --:--:-- --:--:-- --:--:-- 20833
{
  "span_id": "6cceb4b48a156913",
  "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
  "parent_span_id": "892a66d726c7f990",
  "name": "retrieve_rag_context",
  "start_time": "2024-12-04T09:28:21.781995",
  "end_time": "2024-12-04T09:28:21.913352",
  "attributes": {
    "input": [
      "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
      "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
    ]
  },
  "children": [
    {
      "span_id": "1a2df181854064a8",
      "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
      "parent_span_id": "6cceb4b48a156913",
      "name": "MemoryRouter.query_documents",
      "start_time": "2024-12-04T09:28:21.787620",
      "end_time": "2024-12-04T09:28:21.906512",
      "attributes": {
        "input": null
      },
      "children": [],
      "status": "ok"
    }
  ],
  "status": "ok"
}

```

<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
2024-12-04 11:22:45 -08:00
Xi Yan
16769256b7
[llama stack ui] add native eval & inspect distro & playground pages (#541)
# What does this PR do?

New Pages Added: 

- (1) Inspect Distro
- (2) Evaluations: 
  - (a) native evaluations (including generation)
  - (b) application evaluations (no generation, scoring only)
- (3) Playground: 
  - (a) chat
  - (b) RAG  

## Test Plan

```
streamlit run app.py
```

#### Playground

https://github.com/user-attachments/assets/6ca617e8-32ca-49b2-9774-185020ff5204

#### Inspect

https://github.com/user-attachments/assets/01d52b2d-92af-4e3a-b623-a9b8ba22ba99


#### Evaluations (Generation + Scoring)

https://github.com/user-attachments/assets/345845c7-2a2b-4095-960a-9ae40f6a93cf

#### Evaluations (Scoring)

https://github.com/user-attachments/assets/6cc1659f-eba4-49ca-a0a5-7c243557b4f5


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-04 09:47:09 -08:00
Sixian Yi
caf1dac114
unregister API for dataset (#507)
# What does this PR do?

1) Implement `unregister_dataset(dataset_id)` API in both llama stack
routing table and providers: It removes {dataset_id -> Dataset} mapping
from routing table and removes the dataset_id references in provider as
well (ex. for huggingface, we use a KV store to store the dataset id =>
dataset. we delete it during unregistering as well)

2) expose the datasets/unregister_dataset api endpoint 

## Test Plan

**Unit test:** 

`
pytest llama_stack/providers/tests/datasetio/test_datasetio.py -m
"huggingface" -v -s --tb=short --disable-warnings
`

**Test on endpoint:**
tested llama stack using an ollama distribution template:
1) start an ollama server 
2) Start a llama stack server with the default ollama distribution
config + dataset/datasetsio APIs + datasetio provider
```
---- .../ollama-run.yaml
...
apis:
- agents
- inference
- memory
- safety
- telemetry
- datasetio
- datasets
providers:
  datasetio:
  - provider_id: localfs
    provider_type: inline::localfs
    config: {}
...
```
   saw that the new API showed up in startup script
   
  ```
Serving API datasets
 GET /alpha/datasets/get
 GET /alpha/datasets/list
 POST /alpha/datasets/register
 POST /alpha/datasets/unregister
```

3) query `/alpha/datasets/unregister` through curl (since we have not implemented unregister api in llama stack client)

```
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets register
--dataset-id sixian2 --url
https://raw.githubusercontent.com/pytorch/torchtune/main/docs/source/tutorials/chat.rst
--schema {}
(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian     │ localfs     │ {}       │ dataset │
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━┓
┃ identifier ┃ provider_id ┃ metadata ┃ type    ┃
┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━┩
│ sixian2    │ localfs     │ {}       │ dataset │
└────────────┴─────────────┴──────────┴─────────┘
(base) sxyi@sxyi-mbp llama-stack % curl
http://localhost:5001/alpha/datasets/unregister \
-H "Content-Type: application/json" \
-d '{"dataset_id": "sixian2"}'
null%

(base) sxyi@sxyi-mbp llama-stack % llama-stack-client datasets list
```

## Sources


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-12-03 21:18:30 -08:00
Xi Yan
6e10d0b23e precommit 2024-12-03 18:52:43 -08:00
Xi Yan
fd19a8a517 add missing __init__ 2024-12-03 18:50:18 -08:00
Xi Yan
50cc165077
fixes tests & move braintrust api_keys to request headers (#535)
# What does this PR do?

- braintrust scoring provider requires OPENAI_API_KEY env variable to be
set
- move this to be able to be set as request headers (e.g. like together
/ fireworks api keys)
- fixes pytest with agents dependency

## Test Plan

**E2E**
```
llama stack run 
```
```yaml
scoring:
  - provider_id: braintrust-0
    provider_type: inline::braintrust
    config: {}
```

**Client**
```python
self.client = LlamaStackClient(
    base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:5000"),
    provider_data={
        "openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
    },
)
```
- run `llama-stack-client eval run_scoring`

**Unit Test**
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
```

```
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py --env OPENAI_API_KEY=$OPENAI_API_KEY
```
<img width="745" alt="image"
src="https://github.com/user-attachments/assets/68f5cdda-f6c8-496d-8b4f-1b3dabeca9c2">

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-26 13:11:21 -08:00
Xi Yan
d3956a1d22 fix description 2024-11-25 22:02:45 -08:00
Xi Yan
bbd81231ce add missing __init__ 2024-11-25 17:23:27 -08:00