Commit graph

63 commits

Author SHA1 Message Date
Dinesh Yeduguru
c8be0bf1c9
Tools API with brave and MCP providers (#639)
This PR adds a new Tools api and adds two tool runtime providers: brave
and MCP.

Test plan:
```
curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{ "tool_group_id": "simple_tool",
  "tool_group": {
    "type": "model_context_protocol",
    "endpoint": {"uri": "http://localhost:56000/sse"}
  },
  "provider_id": "model-context-protocol"
}'

 curl -X POST 'http://localhost:5000/alpha/toolgroups/register' \
-H 'Content-Type: application/json' \
-d '{
  "tool_group_id": "search", "provider_id": "brave-search",
  "tool_group": {
    "type": "user_defined",
    "tools": [
      {
        "name": "brave_search",
        "description": "A web search tool",
        "parameters": [
          {
            "name": "query",
            "parameter_type": "string",
            "description": "The query to search"
          }
        ],
        "metadata": {},
        "tool_prompt_format": "json"
      }
    ]
  }
}'

 curl -X GET http://localhost:5000/alpha/tools/list | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   662  100   662    0     0   333k      0 --:--:-- --:--:-- --:--:--  646k
[
  {
    "identifier": "brave_search",
    "provider_resource_id": "brave_search",
    "provider_id": "brave-search",
    "type": "tool",
    "tool_group": "search",
    "description": "A web search tool",
    "parameters": [
      {
        "name": "query",
        "parameter_type": "string",
        "description": "The query to search"
      }
    ],
    "metadata": {},
    "tool_prompt_format": "json"
  },
  {
    "identifier": "fetch",
    "provider_resource_id": "fetch",
    "provider_id": "model-context-protocol",
    "type": "tool",
    "tool_group": "simple_tool",
    "description": "Fetches a website and returns its content",
    "parameters": [
      {
        "name": "url",
        "parameter_type": "string",
        "description": "URL to fetch"
      }
    ],
    "metadata": {
      "endpoint": "http://localhost:56000/sse"
    },
    "tool_prompt_format": "json"
  }
]

curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' \
-d '{
    "tool_name": "fetch",
    "args": {
        "url": "http://google.com/"
    }
}'

 curl -X POST 'http://localhost:5000/alpha/tool-runtime/invoke' \
-H 'Content-Type: application/json' -H 'X-LlamaStack-ProviderData: {"api_key": "<KEY>"}' \
-d '{
    "tool_name": "brave_search",
    "args": {
        "query": "who is meta ceo"
    }
}'
```
2024-12-19 21:25:17 -08:00
Ashwin Bharambe
8de8eb03c8
Update the "InterleavedTextMedia" type (#635)
## What does this PR do?

This is a long-pending change and particularly important to get done
now.

Specifically:
- we cannot "localize" (aka download) any URLs from media attachments
anywhere near our modeling code. it must be done within llama-stack.
- `PIL.Image` is infesting all our APIs via `ImageMedia ->
InterleavedTextMedia` and that cannot be right at all. Anything in the
API surface must be "naturally serializable". We need a standard `{
type: "image", image_url: "<...>" }` which is more extensible
- `UserMessage`, `SystemMessage`, etc. are moved completely to
llama-stack from the llama-models repository.

See https://github.com/meta-llama/llama-models/pull/244 for the
corresponding PR in llama-models.

## Test Plan

```bash
cd llama_stack/providers/tests

pytest -s -v -k "fireworks or ollama or together" inference/test_vision_inference.py
pytest -s -v -k "(fireworks or ollama or together) and llama_3b" inference/test_text_inference.py
pytest -s -v -k chroma memory/test_memory.py \
  --env EMBEDDING_DIMENSION=384 --env CHROMA_DB_PATH=/tmp/foobar

pytest -s -v -k fireworks agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct
```

Updated the client sdk (see PR ...), installed the SDK in the same
environment and then ran the SDK tests:

```bash
cd tests/client-sdk
LLAMA_STACK_CONFIG=together pytest -s -v agents/test_agents.py
LLAMA_STACK_CONFIG=ollama pytest -s -v memory/test_memory.py

# this one needed a bit of hacking in the run.yaml to ensure I could register the vision model correctly
INFERENCE_MODEL=llama3.2-vision:latest LLAMA_STACK_CONFIG=ollama pytest -s -v inference/test_inference.py
```
2024-12-17 11:18:31 -08:00
Botao Chen
aeb76390fc
[1/n] torchtune <> llama-stack integration skeleton (#540)
### Context 
This is the 1st of series PRs that integrate torchtune with llama-stack
as meta reference post-training implementation. For MVP, we will focus
on single device LoRA SFT.

Though this PR is still WIP, we want to get early feedback on the high
level design of this skeleton while still working on several details

### Scope
To limit the scope of this PR, we focus on the skeleton of the
implementation.

**What are included?**
- refine the post-training SFT apis
- skeleton of supervised_fine_tune implementation. We verified that we
can call the supervised_fine_tune API successfully from llama stack
client SDK (client side PR:
https://github.com/meta-llama/llama-stack-client-python/pull/51)
- a very basic single device LoRA training recipe based on torchtune
core components
- parity check with torchtune library and post training api unit test

**What are not includes?**
- implementation of other job management, get training artifacts apis
(separate PR)
- refactor the meta reference inference logic to support eval on
finetuned model (separate PR)
- several necessary functionality in the training recipe such as
logging, validation etc (separate PR)
- interop with telemetry for tracing and metrics logging, currently
temporarily log to local disk (separate PR)

### Testing
**e2e test**
Although we haven't added detailed testing and numerical parity check
with torchtune yet, we did a simple E2E test from client to server
1. setup server with` llama stack build --template
experimental-post-training --image-type conda` and `llama stack run
experimental-post-training `
2. On client, run `llama-stack-client --endpoint
http://devgpu018.nha2.facebook.com:5000 post_training
supervised_fine_tune`
3. Training finishes successfully. On server side, get the finetune
checkpoints under output dir. On client side, get the job uuid

server 
<img width="1110" alt="Screenshot 2024-12-02 at 5 52 32 PM"
src="https://github.com/user-attachments/assets/b548eb90-7a9b-4edc-a858-ee237cc4361d">

client 
<img width="807" alt="Screenshot 2024-12-02 at 5 52 37 PM"
src="https://github.com/user-attachments/assets/1138ffa8-4698-40fa-b190-3d7b99646838">

**parity check**
torchtune dataloader output and llama-stack post training dataloader
output are same
<img width="1116" alt="Screenshot 2024-12-04 at 8 18 46 PM"
src="https://github.com/user-attachments/assets/5e295cdc-4c24-4ea6-82c0-ca96ef1bd6ee">

torchtune LoRA SFT and llama-stack post training LoRA SFT on alpaca
dataset with llama3.2 3B instruct model are numerical match

<img width="860" alt="Screenshot 2024-12-04 at 8 17 01 PM"
src="https://github.com/user-attachments/assets/c05cf0a8-c674-4d2e-9f0a-c5d01b2dca99">

<img width="1049" alt="Screenshot 2024-12-04 at 8 17 06 PM"
src="https://github.com/user-attachments/assets/b911d4e2-e7b1-41a9-b62c-d75529b6d443">

**unit test ** 
![Uploading Screenshot 2024-12-09 at 1.35.10 PM.png…]()
2024-12-13 11:05:35 -08:00
Dinesh Yeduguru
96e158eaac
Make embedding generation go through inference (#606)
This PR does the following:
1) adds the ability to generate embeddings in all supported inference
providers.
2) Moves all the memory providers to use the inference API and improved
the memory tests to setup the inference stack correctly and use the
embedding models

This is a merge from #589 and #598
2024-12-12 11:47:50 -08:00
Ashwin Bharambe
b7cb06f004
Allow using an "inline" version of Chroma using PersistentClient (#567)
The same code is used (inside providers/remote/memory/chroma/chroma.py)
but it is driven by separate configurations and changes which Chroma
client to use. Note that the dependencies are separate
(`chromadb-client` vs `chromadb` -- the latter is a _much_ heavier
package.)

```
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_DB_PATH=/tmp/chroma_test
pytest -s -v -m chroma memory/test_memory.py --env CHROMA_URL=http://localhost:6001
```
2024-12-11 16:02:04 -08:00
Dinesh Yeduguru
c23363d561
Add ability to query and export spans to dataset (#574)
This PR adds two new methods to the telemetry API:
1) Gives the ability to query spans directly instead of first querying
traces and then using that to get spans
2) Another method save_spans_to_dataset, which builds on the query spans
to save it on dataset.

This give the ability to saves spans that are part of an agent session
to a dataset.

The unique aspect of this API is that we dont require each provider of
telemetry to implement this method. Hence, its implemented in the
protocol class itself. This required the protocol check to be slightly
modified.
2024-12-05 21:07:30 -08:00
Dinesh Yeduguru
fcd6449519
Telemetry API redesign (#525)
# What does this PR do?
Change the Telemetry API to be able to support different use cases like
returning traces for the UI and ability to export for Evals.
Other changes:
* Add a new trace_protocol decorator to decorate all our API methods so
that any call to them will automatically get traced across all impls.
* There is some issue with the decorator pattern of span creation when
using async generators, where there are multiple yields with in the same
context. I think its much more explicit by using the explicit context
manager pattern using with. I moved the span creations in agent instance
to be using with
* Inject session id at the turn level, which should quickly give us all
traces across turns for a given session

Addresses #509

## Test Plan
```
llama stack run /Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml
PYTHONPATH=. python -m examples.agents.rag_with_memory_bank localhost 5000


 curl -X POST 'http://localhost:5000/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
  "attribute_filters": [
    {
      "key": "session_id",
      "op": "eq",
      "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
  "limit": 100,
  "offset": 0,
  "order_by": ["start_time"]
}' | jq .
[
  {
    "trace_id": "6902f54b83b4b48be18a6f422b13e16f",
    "root_span_id": "5f37b85543afc15a",
    "start_time": "2024-12-04T08:08:30.501587",
    "end_time": "2024-12-04T08:08:36.026463"
  },
  {
    "trace_id": "92227dac84c0615ed741be393813fb5f",
    "root_span_id": "af7c5bb46665c2c8",
    "start_time": "2024-12-04T08:08:36.031170",
    "end_time": "2024-12-04T08:08:41.693301"
  },
  {
    "trace_id": "7d578a6edac62f204ab479fba82f77b6",
    "root_span_id": "1d935e3362676896",
    "start_time": "2024-12-04T08:08:41.695204",
    "end_time": "2024-12-04T08:08:47.228016"
  },
  {
    "trace_id": "dbd767d76991bc816f9f078907dc9ff2",
    "root_span_id": "f5a7ee76683b9602",
    "start_time": "2024-12-04T08:08:47.234578",
    "end_time": "2024-12-04T08:08:53.189412"
  }
]


curl -X POST 'http://localhost:5000/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2, "attributes_to_return": ["input"] }' | jq .
  % Total    % Received % Xferd  Average Speed   Time    Time     Time  Current
                                 Dload  Upload   Total   Spent    Left  Speed
100   875  100   790  100    85  18462   1986 --:--:-- --:--:-- --:--:-- 20833
{
  "span_id": "6cceb4b48a156913",
  "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
  "parent_span_id": "892a66d726c7f990",
  "name": "retrieve_rag_context",
  "start_time": "2024-12-04T09:28:21.781995",
  "end_time": "2024-12-04T09:28:21.913352",
  "attributes": {
    "input": [
      "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
      "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
    ]
  },
  "children": [
    {
      "span_id": "1a2df181854064a8",
      "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
      "parent_span_id": "6cceb4b48a156913",
      "name": "MemoryRouter.query_documents",
      "start_time": "2024-12-04T09:28:21.787620",
      "end_time": "2024-12-04T09:28:21.906512",
      "attributes": {
        "input": null
      },
      "children": [],
      "status": "ok"
    }
  ],
  "status": "ok"
}

```

<img width="1677" alt="Screenshot 2024-12-04 at 9 42 56 AM"
src="https://github.com/user-attachments/assets/4d3cea93-05ce-415a-93d9-4b1628631bf8">
2024-12-04 11:22:45 -08:00
Henry Tu
64c6df8392
Cerebras Inference Integration (#265)
Adding Cerebras Inference as an API provider.

## Testing

### Conda
```
$ llama stack build --template cerebras --image-type conda
$ llama stack run ~/.llama/distributions/llamastack-cerebras/cerebras-run.yaml
...
Listening on ['::', '0.0.0.0']:5000
INFO:     Started server process [12443]
INFO:     Waiting for application startup.
INFO:     Application startup complete.
INFO:     Uvicorn running on http://['::', '0.0.0.0']:5000 (Press CTRL+C to quit)
```

### Chat Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/chat-completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "messages": [
        {
            "role": "user",
            "content": "What is the temperature in Seattle right now?"
        }
    ],
    "stream": false,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 100
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}' 
```

#### Non-Streaming Response
```
{
  "completion_message": {
    "role": "assistant",
    "content": "",
    "stop_reason": "end_of_message",
    "tool_calls": [
      {
        "call_id": "6f42fdcc-6cbb-46ad-a17b-5d20ac64b678",
        "tool_name": "getTemperature",
        "arguments": {
          "location": "Seattle"
        }
      }
    ]
  },
  "logprobs": null
}
```

#### Streaming Response
```
data: {"event":{"event_type":"start","delta":"","logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"","parse_status":"started"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"{\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"type","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"function","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"name","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"get","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Temperature","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\",","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"parameters","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" {\"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"location","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\":","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":" \"","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"Seattle","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":"\"}}","parse_status":"in_progress"},"logprobs":null,"stop_reason":null}}
data: {"event":{"event_type":"progress","delta":{"content":{"call_id":"e742df1f-0ae9-40ad-a49e-18e5c905484f","tool_name":"getTemperature","arguments":{"location":"Seattle"}},"parse_status":"success"},"logprobs":null,"stop_reason":"end_of_message"}}
data: {"event":{"event_type":"complete","delta":"","logprobs":null,"stop_reason":"end_of_message"}}
```

### Completion
```
$ curl --location 'http://localhost:5000/alpha/inference/completion' --header 'Content-Type: application/json' --data '{
    "model_id": "meta-llama/Llama-3.1-8B-Instruct",
    "content": "1,2,3,",
    "stream": true,
    "sampling_params": {
        "strategy": "top_p",
        "temperature": 0.5,
        "max_tokens": 10
    },                   
    "tool_choice": "auto",
    "tool_prompt_format": "json",
    "tools": [                   
        {
            "tool_name": "getTemperature",
            "description": "Gets the current temperature of a location.",
            "parameters": {                                              
                "location": {
                    "param_type": "string",
                    "description": "The name of the place to get the temperature from in degress celsius.",
                    "required": true                                                                       
                }                   
            }    
        }    
    ]    
}'
```

#### Non-Streaming Response
```
{
  "content": "4,5,6,7,8,",
  "stop_reason": "out_of_tokens",
  "logprobs": null
}
```

#### Streaming Response
```
data: {"delta":"4","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"5","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"6","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"7","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"8","stop_reason":null,"logprobs":null}
data: {"delta":",","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":null,"logprobs":null}
data: {"delta":"","stop_reason":"out_of_tokens","logprobs":null}
```

### Pre-Commit Checks
```
trim trailing whitespace.................................................Passed
check python ast.........................................................Passed
check for merge conflicts................................................Passed
check for added large files..............................................Passed
fix end of files.........................................................Passed
Insert license in comments...............................................Passed
flake8...................................................................Passed
Format files with µfmt...................................................Passed
```

### Testing with `test_inference.py`
```
$ export CEREBRAS_API_KEY=<insert API key here>
$ pytest -v -s llama_stack/providers/tests/inference/test_text_inference.py -m "cerebras and llama_8b" 
/net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/lib/python3.12/site-packages/pytest_asyncio/plugin.py:208: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"

  warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
=================================================== test session starts ===================================================
platform linux -- Python 3.12.3, pytest-8.3.3, pluggy-1.5.0 -- /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack/.venv/bin/python3.12
cachedir: .pytest_cache
rootdir: /net/henryt-dev/srv/nfs/henryt-data/ws/llama-stack
configfile: pyproject.toml
plugins: anyio-4.6.2.post1, asyncio-0.24.0
asyncio: mode=Mode.STRICT, default_loop_scope=None
collected 128 items / 120 deselected / 8 selected                                                                         

llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_model_list[llama_8b-cerebras] Resolved 4 providers
 inner-inference => cerebras
 models => __routing_table__
 inference => __autorouted__
 inspect => __builtin__

Models: meta-llama/Llama-3.1-8B-Instruct served by cerebras

PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completion[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_completions_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_structured_output[llama_8b-cerebras] SKIPPED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling[llama_8b-cerebras] PASSED
llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_with_tool_calling_streaming[llama_8b-cerebras] PASSED

================================ 6 passed, 2 skipped, 120 deselected, 6 warnings in 3.95s =================================
```

I ran `python llama_stack/scripts/distro_codegen.py` to run codegen.
2024-12-03 21:15:32 -08:00
Xi Yan
50cc165077
fixes tests & move braintrust api_keys to request headers (#535)
# What does this PR do?

- braintrust scoring provider requires OPENAI_API_KEY env variable to be
set
- move this to be able to be set as request headers (e.g. like together
/ fireworks api keys)
- fixes pytest with agents dependency

## Test Plan

**E2E**
```
llama stack run 
```
```yaml
scoring:
  - provider_id: braintrust-0
    provider_type: inline::braintrust
    config: {}
```

**Client**
```python
self.client = LlamaStackClient(
    base_url=os.environ.get("LLAMA_STACK_ENDPOINT", "http://localhost:5000"),
    provider_data={
        "openai_api_key": os.environ.get("OPENAI_API_KEY", ""),
    },
)
```
- run `llama-stack-client eval run_scoring`

**Unit Test**
```
pytest -v -s -m meta_reference_eval_together_inference eval/test_eval.py
```

```
pytest -v -s -m braintrust_scoring_together_inference scoring/test_scoring.py --env OPENAI_API_KEY=$OPENAI_API_KEY
```
<img width="745" alt="image"
src="https://github.com/user-attachments/assets/68f5cdda-f6c8-496d-8b4f-1b3dabeca9c2">

## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-26 13:11:21 -08:00
Matthew Farrellee
4e6c984c26
add NVIDIA NIM inference adapter (#355)
# What does this PR do?

this PR adds a basic inference adapter to NVIDIA NIMs

what it does -
 - chat completion api
   - tool calls
   - streaming
   - structured output
   - logprobs
 - support hosted NIM on integrate.api.nvidia.com
 - support downloaded NIM containers

what it does not do -
 - completion api
 - embedding api
 - vision models
 - builtin tools
 - have certainty that sampling strategies are correct

## Feature/Issue validation/testing/test plan

`pytest -s -v --providers inference=nvidia
llama_stack/providers/tests/inference/ --env NVIDIA_API_KEY=...`

all tests should pass. there are pydantic v1 warnings.


## Before submitting
- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Did you read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Was this discussed/approved via a Github issue? Please add a link
      to it if that's the case.
- [ ] Did you make sure to update the documentation with your changes?
- [x] Did you write any new necessary tests?

Thanks for contributing 🎉!
2024-11-23 15:59:00 -08:00
Dalton Flanagan
b007b062f3
Fix llama stack build in 0.0.54 (#505)
# What does this PR do?

Safety provider `inline::meta-reference` is now deprecated. However, we 

* aren't checking / printing the deprecation message in `llama stack
build`
* make the deprecated (unusable) provider

So I (1) added checking and (2) made `inline::llama-guard` the default

## Test Plan

Before

```
Traceback (most recent call last):
  File "/home/dalton/.conda/envs/nov22/bin/llama", line 8, in <module>
    sys.exit(main())
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 46, in main
    parser.run(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 40, in run
    args.func(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 177, in _run_stack_build_command
    self._run_stack_build_command_from_build_config(build_config)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 305, in _run_stack_build_command_from_build_config
    self._generate_run_config(build_config, build_dir)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 226, in _generate_run_config
    config_type = instantiate_class_type(
  File "/home/dalton/all/llama-stack/llama_stack/distribution/utils/dynamic.py", line 12, in instantiate_class_type
    module = importlib.import_module(module_name)
  File "/home/dalton/.conda/envs/nov22/lib/python3.10/importlib/__init__.py", line 126, in import_module
    return _bootstrap._gcd_import(name[level:], package, level)
  File "<frozen importlib._bootstrap>", line 1050, in _gcd_import
  File "<frozen importlib._bootstrap>", line 1027, in _find_and_load
  File "<frozen importlib._bootstrap>", line 1004, in _find_and_load_unlocked
ModuleNotFoundError: No module named 'llama_stack.providers.inline.safety.meta_reference'
```

After

```
Traceback (most recent call last):
  File "/home/dalton/.conda/envs/nov22/bin/llama", line 8, in <module>
    sys.exit(main())
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 46, in main
    parser.run(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/llama.py", line 40, in run
    args.func(args)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 177, in _run_stack_build_command
    self._run_stack_build_command_from_build_config(build_config)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 309, in _run_stack_build_command_from_build_config
    self._generate_run_config(build_config, build_dir)
  File "/home/dalton/all/llama-stack/llama_stack/cli/stack/build.py", line 228, in _generate_run_config
    raise InvalidProviderError(p.deprecation_error)
llama_stack.distribution.resolver.InvalidProviderError: 
Provider `inline::meta-reference` for API `safety` does not work with the latest Llama Stack.
- if you are using Llama Guard v3, please use the `inline::llama-guard` provider instead.
- if you are using Prompt Guard, please use the `inline::prompt-guard` provider instead.
- if you are using Code Scanner, please use the `inline::code-scanner` provider instead.
```

<img width="469" alt="Screenshot 2024-11-22 at 4 10 24 PM"
src="https://github.com/user-attachments/assets/8c2e09fe-379a-4504-b246-7925f80a6ed6">

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [x] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-22 16:23:44 -05:00
Xi Yan
0784284ab5
[Agentic Eval] add ability to run agents generation (#469)
# What does this PR do?

- add ability to run agents generation for full eval (generate +
scoring)
- pre-register SimpleQA  benchmark llm-as-judge scoring function in code


## Test Plan


![image](https://github.com/user-attachments/assets/b4b6f086-1be4-4c2a-8ab0-6839f0067c0a)


![image](https://github.com/user-attachments/assets/05bb7a09-2d7a-4031-8eb6-e1ca670ee439)


#### Simple QA w/ Search

![image](https://github.com/user-attachments/assets/0a51e3f3-9fc7-479b-8295-89aed63496e0)

- eval_task_config_simpleqa_search.json
```json
{
    "type": "benchmark",
    "eval_candidate": {
        "type": "agent",
        "config": {
            "model": "Llama3.1-405B-Instruct",
            "instructions": "Please use the search tool to answer the question.",
            "sampling_params": {
                "strategy": "greedy",
                "temperature": 1.0,
                "top_p": 0.9
            },
            "tools": [
                {
                    "type": "brave_search",
                    "engine": "brave",
                    "api_key": "API_KEY"
                }
            ],
            "tool_choice": "auto",
            "tool_prompt_format": "json",
            "input_shields": [],
            "output_shields": [],
            "enable_session_persistence": false
        }
    }
}
```

#### SimpleQA w/o Search

![image](https://github.com/user-attachments/assets/6301feef-2abb-4bee-b50c-97da1c90482b)


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-18 11:43:03 -08:00
Xi Yan
e8112b31ab
move hf addapter->remote (#459)
# What does this PR do?

- move folder
## Test Plan

**Unit Test**
```
pytest -v -s -m "huggingface" datasetio/test_datasetio.py
```

**E2E**
```
llama stack run 
```

```
llama-stack-client eval run_benchmark meta-reference-mmlu --num-examples 5 --output-dir ./ --eval-task-config ~/eval_task_config.json --visualize
```
<img width="657" alt="image"
src="https://github.com/user-attachments/assets/63d53f9d-6c7e-4667-af8c-9d16c91ae6e3">



## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-14 22:41:19 -05:00
Xi Yan
c29fa56dde
add inline:: prefix for localfs provider (#441)
# What does this PR do?

- add inline:: prefix for localfs provider

## Test Plan

```
llama stack run

datasetio:
  - provider_id: localfs-0
    provider_type: inline::localfs
    config: {}
```

```
pytest -v -s -m meta_reference_eval_fireworks_inference eval/test_eval.py
pytest -v -s -m localfs datasetio/test_datasetio.py
```

## Sources

Please link relevant resources if necessary.


## Before submitting

- [ ] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [ ] Ran pre-commit to handle lint / formatting issues.
- [ ] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
      Pull Request section?
- [ ] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
2024-11-13 10:44:39 -05:00
Ashwin Bharambe
12947ac19e
Kill "remote" providers and fix testing with a remote stack properly (#435)
# What does this PR do?

This PR kills the notion of "pure passthrough" remote providers. You
cannot specify a single provider you must specify a whole distribution
(stack) as remote.

This PR also significantly fixes / upgrades testing infrastructure so
you can now test against a remotely hosted stack server by just doing

```bash
pytest -s -v -m remote  test_agents.py \
  --inference-model=Llama3.1-8B-Instruct --safety-shield=Llama-Guard-3-1B \
  --env REMOTE_STACK_URL=http://localhost:5001
```

Also fixed `test_agents_persistence.py` (which was broken) and killed
some deprecated testing functions.

## Test Plan

All the tests.
2024-11-12 21:51:29 -08:00
Xi Yan
cb77426fb5
fix fireworks (#427) 2024-11-12 12:15:55 -05:00
Xi Yan
84c6fbbd93
fix tests after registration migration & rename meta-reference -> basic / llm_as_judge provider (#424)
* rename meta-reference -> basic

* config rename

* impl rename

* rename llm_as_judge, fix test

* util

* rebase

* naming fix
2024-11-12 10:35:44 -05:00
Ashwin Bharambe
3d7561e55c
Rename all inline providers with an inline:: prefix (#423) 2024-11-11 22:19:16 -08:00
Xi Yan
b4416b72fd
Folder restructure for evals/datasets/scoring (#419)
* rename evals related stuff

* fix datasetio

* fix scoring test

* localfs -> LocalFS

* refactor scoring

* refactor scoring

* remove 8b_correctness scoring_fn from tests

* tests w/ eval params

* scoring fn braintrust fixture

* import
2024-11-11 17:35:40 -05:00
Xi Yan
2b7d70ba86
[Evals API][11/n] huggingface dataset provider + mmlu scoring fn (#392)
* wip

* scoring fn api

* eval api

* eval task

* evaluate api update

* pre commit

* unwrap context -> config

* config field doc

* typo

* naming fix

* separate benchmark / app eval

* api name

* rename

* wip tests

* wip

* datasetio test

* delete unused

* fixture

* scoring resolve

* fix scoring register

* scoring test pass

* score batch

* scoring fix

* fix eval

* test eval works

* huggingface provider

* datasetdef files

* mmlu scoring fn

* test wip

* remove type ignore

* api refactor

* add default task_eval_id for routing

* add eval_id for jobs

* remove type ignore

* huggingface provider

* wip huggingface register

* only keep 1 run_eval

* fix optional

* register task required

* register task required

* delete old tests

* fix

* mmlu loose

* refactor

* msg

* fix tests

* move benchmark task def to file

* msg

* gen openapi

* openapi gen

* move dataset to hf llamastack repo

* remove todo

* refactor

* add register model to unit test

* rename

* register to client

* delete preregistered dataset/eval task

* comments

* huggingface -> remote adapter

* openapi gen
2024-11-11 14:49:50 -05:00
Ashwin Bharambe
c1f7ba3aed
Split safety into (llama-guard, prompt-guard, code-scanner) (#400)
Splits the meta-reference safety implementation into three distinct providers:

- inline::llama-guard
- inline::prompt-guard
- inline::code-scanner

Note that this PR is a backward incompatible change to the llama stack server. I have added deprecation_error field to ProviderSpec -- the server reads it and immediately barfs. This is used to direct the user with a specific message on what action to perform. An automagical "config upgrade" is a bit too much work to implement right now :/

(Note that we will be gradually prefixing all inline providers with inline:: -- I am only doing this for this set of new providers because otherwise existing configuration files will break even more badly.)
2024-11-11 09:29:18 -08:00
Ashwin Bharambe
4986e46188
Distributions updates (slight updates to ollama, add inline-vllm and remote-vllm) (#408)
* remote vllm distro

* add inline-vllm details, fix things

* Write some docs
2024-11-08 18:09:39 -08:00
Ashwin Bharambe
694c142b89
Add provider deprecation support; change directory structure (#397)
* Add provider deprecation support; change directory structure

* fix a couple dangling imports

* move the meta_reference safety dir also
2024-11-07 13:04:53 -08:00
Xi Yan
36e2538eb0
fix together inference validator (#393) 2024-11-07 11:31:53 -08:00
Ashwin Bharambe
064d2a5287
Remove the safety adapter for Together; we can just use "meta-reference" (#387) 2024-11-06 17:36:57 -08:00
Ashwin Bharambe
994732e2e0
impls -> inline, adapters -> remote (#381) 2024-11-06 14:54:05 -08:00
Ashwin Bharambe
b10e9f46bb
Enable remote::vllm (#384)
* Enable remote::vllm

* Kill the giant list of hard coded models
2024-11-06 14:42:44 -08:00
Xi Yan
ed833bb758
[Evals API][7/n] braintrust scoring provider (#333)
* wip scoring refactor

* llm as judge, move folders

* test full generation + eval

* extract score regex to llm context

* remove prints, cleanup braintrust in this branch

* braintrust skeleton

* datasetio test fix

* braintrust provider

* remove prints

* dependencies

* change json -> class

* json -> class

* remove initialize

* address nits

* check identifier prefix

* braintrust scoring identifier check, rebase

* udpate MANIFEST

* manifest

* remove braintrust scoring_fn

* remove comments

* tests

* imports fix
2024-10-28 18:59:35 -07:00
Xi Yan
7b8748c53e
[Evals API][6/n] meta-reference llm as judge, registration for ScoringFnDefs (#330)
* wip scoring refactor

* llm as judge, move folders

* test full generation + eval

* extract score regex to llm context

* remove prints, cleanup braintrust in this branch

* change json -> class

* remove initialize

* address nits

* check identifier prefix

* udpate MANIFEST
2024-10-28 14:08:42 -07:00
Xi Yan
abdf7cddf3
[Evals API][4/n] evals with generation meta-reference impl (#303)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* evals with generation

* add all rows scores to ScoringResult

* minor typing

* bugfix

* scoring function def rename

* rebase name

* refactor

* address comments

* Update iOS inference instructions for new quantization

* Small updates to quantization config

* Fix score threshold in faiss

* Bump version to 0.0.45

* Handle both ipv6 and ipv4 interfaces together

* update manifest for build templates

* Update getting_started.md

* chatcompletion & completion input type validation

* inclusion->subsetof

* error checking

* scoring_function -> scoring_fn rename, scorer -> scoring_fn rename

* address comments

* [Evals API][5/n] fixes to generate openapi spec (#323)

* generate openapi

* typing comment, dataset -> dataset_id

* remove custom type

* sample eval run.yaml

---------

Co-authored-by: Dalton Flanagan <6599399+dltn@users.noreply.github.com>
Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2024-10-25 13:12:39 -07:00
Xi Yan
cb84034567
[Evals API][3/n] scoring_functions / scoring meta-reference implementations (#296)
* wip

* dataset validation

* test_scoring

* cleanup

* clean up test

* comments

* error checking

* dataset client

* test client:

* datasetio client

* clean up

* basic scoring function works

* scorer wip

* equality scorer

* score batch impl

* score batch

* update scoring test

* refactor

* validate scorer input

* address comments

* add all rows scores to ScoringResult

* bugfix

* scoring function def rename
2024-10-24 14:52:30 -07:00
Ashwin Bharambe
7afe51c84d
New quantized models (#301) 2024-10-24 08:38:56 -07:00
Ashwin Bharambe
05a8d47b98 Add a meta-reference-quantized-gpu distribution 2024-10-23 21:45:50 -07:00
Xi Yan
821810657f
[Evals API][2/n] datasets / datasetio meta-reference implementation (#288)
* skeleton dataset / datasetio

* dataset datasetio

* config

* address comments

* delete dataset_utils

* address comments

* naming fix
2024-10-22 16:12:16 -07:00
Ashwin Bharambe
c06718fbd5
Add support for Structured Output / Guided decoding (#281)
Added support for structured output in the API and added a reference implementation for meta-reference.

A few notes:

* Two formats are specified in the API: Json schema and EBNF based grammar
* Implementation only supports Json for now
We use lm-format-enhancer to provide the implementation right now but may change this especially because BNF grammars aren't supported by that library.
Fireworks has support for structured output and Together has limited supported for it too. Subsequent PRs will add these changes. We would like all our inference providers to provide structured output for llama models since it is an extremely important and highly sought-after need by the developers.
2024-10-22 12:53:34 -07:00
Anush
4c3d33e6f4
feat: Qdrant Vector index support (#221)
This PR adds support for Qdrant - https://qdrant.tech/ to be used as a vector memory.

I've unit-tested the methods to confirm that they work as intended.

To run Qdrant

```
docker run -p 6333:6333 qdrant/qdrant
```
2024-10-22 12:50:19 -07:00
Xi Yan
4d2bd2d39e
add more distro templates (#279)
* verify dockers

* together distro verified

* readme

* fireworks distro

* fireworks compose up

* fireworks verified
2024-10-21 18:15:08 -07:00
Xi Yan
23210e8679
llama stack distributions / templates / docker refactor (#266)
* docker compose ollama

* comment

* update compose file

* readme for distributions

* readme

* move distribution folders

* move distribution/templates to distributions/

* rename

* kill distribution/templates

* readme

* readme

* build/developer cookbook/new api provider

* developer cookbook

* readme

* readme

* [bugfix] fix case for agent when memory bank registered without specifying provider_id (#264)

* fix case where memory bank is registered without provider_id

* memory test

* agents unit test

* Add an option to not use elastic agents for meta-reference inference (#269)

* Allow overridding checkpoint_dir via config

* Small rename

* Make all methods `async def` again; add completion() for meta-reference (#270)

PR #201 had made several changes while trying to fix issues with getting the stream=False branches of inference and agents API working. As part of this, it made a change which was slightly gratuitous. Namely, making chat_completion() and brethren "def" instead of "async def".

The rationale was that this allowed the user (within llama-stack) of this to use it as:

```
async for chunk in api.chat_completion(params)
```

However, it causes unnecessary confusion for several folks. Given that clients (e.g., llama-stack-apps) anyway use the SDK methods (which are completely isolated) this choice was not ideal. Let's revert back so the call now looks like:

```
async for chunk in await api.chat_completion(params)
```

Bonus: Added a completion() implementation for the meta-reference provider. Technically should have been another PR :)

* Improve an important error message

* update ollama for llama-guard3

* Add vLLM inference provider for OpenAI compatible vLLM server (#178)

This PR adds vLLM inference provider for OpenAI compatible vLLM server.

* Create .readthedocs.yaml

Trying out readthedocs

* Update event_logger.py (#275)

spelling error

* vllm

* build templates

* delete templates

* tmp add back build to avoid merge conflicts

* vllm

* vllm

---------

Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
Co-authored-by: Ashwin Bharambe <ashwin@meta.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: raghotham <rsm@meta.com>
Co-authored-by: nehal-a2z <nehal@coderabbit.ai>
2024-10-21 11:17:53 -07:00
Yuan Tang
a27a2cd2af
Add vLLM inference provider for OpenAI compatible vLLM server (#178)
This PR adds vLLM inference provider for OpenAI compatible vLLM server.
2024-10-20 18:43:25 -07:00
Ashwin Bharambe
1ff0476002 Split off meta-reference-quantized provider 2024-10-10 16:03:19 -07:00
Ashwin Bharambe
6bb57e72a7
Remove "routing_table" and "routing_key" concepts for the user (#201)
This PR makes several core changes to the developer experience surrounding Llama Stack.

Background: PR #92 introduced the notion of "routing" to the Llama Stack. It introduces three object types: (1) models, (2) shields and (3) memory banks. Each of these objects can be associated with a distinct provider. So you can get model A to be inferenced locally while model B, C can be inference remotely (e.g.)

However, this had a few drawbacks:

you could not address the provider instances -- i.e., if you configured "meta-reference" with a given model, you could not assign an identifier to this instance which you could re-use later.
the above meant that you could not register a "routing_key" (e.g. model) dynamically and say "please use this existing provider I have already configured" for a new model.
the terms "routing_table" and "routing_key" were exposed directly to the user. in my view, this is way too much overhead for a new user (which almost everyone is.) people come to the stack wanting to do ML and encounter a completely unexpected term.
What this PR does: This PR structures the run config with only a single prominent key:

- providers
Providers are instances of configured provider types. Here's an example which shows two instances of the remote::tgi provider which are serving two different models.

providers:
  inference:
  - provider_id: foo
    provider_type: remote::tgi
    config: { ... }
  - provider_id: bar
    provider_type: remote::tgi
    config: { ... }
Secondly, the PR adds dynamic registration of { models | shields | memory_banks } to the API surface. The distribution still acts like a "routing table" (as previously) except that it asks the backing providers for a listing of these objects. For example it asks a TGI or Ollama inference adapter what models it is serving. Only the models that are being actually served can be requested by the user for inference. Otherwise, the Stack server will throw an error.

When dynamically registering these objects, you can use the provider IDs shown above. Info about providers can be obtained using the Api.inspect set of endpoints (/providers, /routes, etc.)

The above examples shows the correspondence between inference providers and models registry items. Things work similarly for the safety <=> shields and memory <=> memory_banks pairs.

Registry: This PR also makes it so that Providers need to implement additional methods for registering and listing objects. For example, each Inference provider is now expected to implement the ModelsProtocolPrivate protocol (naming is not great!) which consists of two methods

register_model
list_models
The goal is to inform the provider that a certain model needs to be supported so the provider can make any relevant backend changes if needed (or throw an error if the model cannot be supported.)

There are many other cleanups included some of which are detailed in a follow-up comment.
2024-10-10 10:24:13 -07:00
Ashwin Bharambe
4263764493 Fix adapter_id -> adapter_type for Weaviate 2024-10-07 06:46:32 -07:00
Zain Hasan
f4f7618120
add Weaviate memory adapter (#95) 2024-10-06 22:21:50 -07:00
Prithu Dasgupta
7abab7604b
add databricks provider (#83)
* add databricks provider

* update provider and test
2024-10-05 23:35:54 -07:00
Russell Bryant
f73e247ba1
Inline vLLM inference provider (#181)
This is just like `local` using `meta-reference` for everything except
it uses `vllm` for inference.

Docker works, but So far, `conda` is a bit easier to use with the vllm
provider. The default container base image does not include all the
necessary libraries for all vllm features. More cuda dependencies are
necessary.

I started changing this base image used in this template, but it also
required changes to the Dockerfile, so it was getting too involved to
include in the first PR.

Working so far:

* `python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream True`
* `python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream False`

Example:

```
$ python -m llama_stack.apis.inference.client localhost 5000 --model Llama3.2-1B-Instruct --stream False
User>hello world, write me a 2 sentence poem about the moon
Assistant>
The moon glows bright in the midnight sky
A beacon of light,
```

I have only tested these models:

* `Llama3.1-8B-Instruct` - across 4 GPUs (tensor_parallel_size = 4)
* `Llama3.2-1B-Instruct` - on a single GPU (tensor_parallel_size = 1)
2024-10-05 23:34:16 -07:00
Ashwin Bharambe
210b71b0ba
fix prompt guard (#177)
Several other fixes to configure. Add support for 1b/3b models in ollama.
2024-10-03 11:07:53 -07:00
Ashwin Bharambe
fe4aabd690 provider_id => provider_type, adapter_id => adapter_type 2024-10-02 14:05:59 -07:00
moritalous
2bd785354d
fix broken bedrock inference provider (#151) 2024-09-29 20:17:58 -07:00
Yogish Baliga
940968ee3f
fixing safety inference and safety adapter for new API spec. Pinned t… (#105)
* fixing safety inference and safety adapter for new API spec. Pinned the llama_models version to 0.0.24 as the latest version 0.0.35 has the model descriptor name changed. I was getting the missing package error during runtime as well, hence added the dependency to requirements.txt

* support Llama 3.2 models in Together inference adapter and cleanup Together safety adapter

* fixing model names

* adding vision guard to Together safety
2024-09-28 15:45:38 -07:00
Ashwin Bharambe
0a3999a9a4
Use inference APIs for executing Llama Guard (#121)
We should use Inference APIs to execute Llama Guard instead of directly needing to use HuggingFace modeling related code. The actual inference consideration is handled by Inference.
2024-09-28 15:40:06 -07:00