# What does this PR do?
the providers list is missing post_training. Add that column and
`HuggingFace`, `TorchTune`, and `NVIDIA NEMO` as supported providers.
also point to these providers in docs/source/providers/index.md, and
describe basic functionality
There are other missing provider types here as well, but starting with
this
Signed-off-by: Charlie Doern <cdoern@redhat.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
Fix a bug in openai_compat where choices are not indexed correctly.
## Test Plan
Added a new test.
Rerun the failed inference_store tests:
llama stack run fireworks --image-type conda
pytest -s -v tests/integration/ --stack-config http://localhost:8321 -k
'test_inference_store' --text-model meta-llama/Llama-3.3-70B-Instruct
--count 10
# What does this PR do?
Changed the test to not require tool_call in output, but still keeping
the tools params there as a smoke test.
## Test Plan
Used llama3.3 from fireworks (same as CI)
<img width="1433" alt="image"
src="https://github.com/user-attachments/assets/1e5fca98-9b4f-402e-a0bc-d9f910f2c207"
/>
Run with ollama distro and 3b model.
# What does this PR do?
The previous `[project.optional-dependencies]` was misrepresenting what
the packages were. They were NOT optional dependencies to the project
but development dependencies. Unlike optional dependencies, development
dependencies are local-only and will not be included in the project
requirements when published to PyPI or other indexes. As such,
development dependencies are not included in the [project] table.
Additionally, the dev group is synced by default.
Source:
https://docs.astral.sh/uv/concepts/projects/dependencies/#development-dependencies
Signed-off-by: Sébastien Han <seb@redhat.com>
This adds initial streaming support to the Responses API.
This PR makes sure that the _first_ inference call made to chat
completions streams out.
There's more to be done:
- tool call output tokens need to stream out when possible
- we need to loop through multiple rounds of inference and they all need
to stream out.
## Test Plan
Added a test. Executed as:
```
FIREWORKS_API_KEY=... \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--provider=stack:fireworks --model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
Then, started a llama stack fireworks distro and tested against it like
this:
```
OPENAI_API_KEY=blah \
pytest -s -v 'tests/verifications/openai_api/test_responses.py' \
--base-url http://localhost:8321/v1/openai/v1 \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
# What does this PR do?
Handles the case where the vllm config `tls_verify` is set to `false` or
`true`.
Closes: https://github.com/meta-llama/llama-stack/issues/2283
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
It's not used anywhere in the build process. Ancient artifact from an
old attempt of using sub packages to build distros.
## Test Plan
<!-- Describe the tests you ran to verify your changes with result
summaries. *Provide clear instructions so the plan can be easily
re-executed.* -->
N/A
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This is not a core dependency of the distro server. It's only necessary
when using `inline::rag-runtime` or `inline::meta-reference` providers.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Fixes an issue where running `llama stack build --template ollama
--image-type venv --run` fails with a TypeError when validating external
providers directory paths.
The error occurs because `os.path.exists()` is called with `Path(None)`
instead of converting it to a string first. This change ensures
consistent handling of `None` values for `external_providers_dir` across
both build and
[run](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/cli/stack/run.py#L134)
commands by using `str()` conversion before path validation.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
```bash
INFERENCE_MODEL=llama3.2:3b uv run --with llama-stack llama stack build --template ollama --image-type venv --run
```
Command completes successfully without TypeError
[//]: # (## Documentation)
Two somewhat annoying fixes:
- we are going to index tools for non-MCP toolgroups always (like we
used to do). because there are just random assumptions in our tests,
etc. and I don't want to fix them right now
- we need to handle the funny case of toolgroups like
`builtin::rag/knowledge_search` where we added the tool name to use in
the toolgroup itself.
# What does this PR do?
The `tls_verify` can now receive a path to a certificate file if the
endpoint requires it.
Signed-off-by: Sébastien Han <seb@redhat.com>
When registering a MCP endpoint, we cannot list tools (like we used to)
since the MCP endpoint may be behind an auth wall. Registration can
happen much sooner (via run.yaml).
Instead, we do listing only when the _user_ actually calls listing.
Furthermore, we cache the list in-memory in the server. Currently, the
cache is not invalidated -- we may want to periodically re-list for MCP
servers. Note that they must call `list_tools` before calling
`invoke_tool` -- we use this critically.
This will enable us to list MCP servers in run.yaml
## Test Plan
Existing tests, updated tests accordingly.
Getting this error from pypi of late
```
'python-requests/2.32.3 User-Agents are currently blocked from accessing JSON release resources. A cluster is apparently crawling all project/release resources resulting in excess cache misses. Please contact admin@pypi.org if you have information regarding what this software may be.'
```
The test depends on llama's tool calling ability. In the CI, we run with
a small ollama model.
The fix might be to check for either message or function_call because
the model is flaky and we aren't really testing that behavior?
# What does this PR do?
This fixes a high vulnerable CVE in `setuptools`:
https://github.com/advisories/GHSA-5rjg-fvgr-3xxf
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Francisco Arceo <arceofrancisco@gmail.com>
# What does this PR do?
TSIA
`--enable-ui` to enable
## Test Plan
`llama stack run dev --image-type conda --enable-ui`
`localhost:8322` shows UI
llama stack run dev --image-type conda
`localhost:8322` does not work
# What does this PR do?
This is not part of the official OpenAI API, but we'll use this for the
logs UI.
In order to support more filtering options, I'm adopting the newly
introduced sql store in in place of the kv store.
## Test Plan
Added integration/unit tests.
Having to run (and re-run) a server while running verifications can be
annoying while you are iterating on code. This makes it so you can use
the library client -- and because it is OpenAI client compatible, it all
works.
## Test Plan
```
pytest -s -v tests/verifications/openai_api/test_responses.py \
--provider=stack:together \
--model meta-llama/Llama-4-Scout-17B-16E-Instruct
```
The most interesting MCP servers are those with an authorization wall in
front of them. This PR uses the existing `provider_data` mechanism of
passing provider API keys for passing MCP access tokens (in fact,
arbitrary headers in the style of the OpenAI Responses API) from the
client through to the MCP server.
```
class MCPProviderDataValidator(BaseModel):
# mcp_endpoint => list of headers to send
mcp_headers: dict[str, list[str]] | None = None
```
Note how we must stuff the headers for all MCP endpoints into a single
"MCPProviderDataValidator". Unlike existing providers (e.g., Together
and Fireworks for inference) where we could name the provider api keys
clearly (`together_api_key`, `fireworks_api_key`), we cannot name these
keys for MCP. We have a single generic MCP provider which can serve
multiple "toolgroups". So we use a dict to combine all the headers for
all MCP endpoints you may want to use in an agentic call.
## Test Plan
See the added integration test for usage.
# What does this PR do?
Since https://github.com/meta-llama/llama-stack/pull/2193 switched to
openai sdk, we need to strip 'openai/' from the model_id
## Test Plan
start server with openai provider and send a chat completion call
# What does this PR do?
* Provide sqlite implementation of the APIs introduced in
https://github.com/meta-llama/llama-stack/pull/2145.
* Introduced a SqlStore API: llama_stack/providers/utils/sqlstore/api.py
and the first Sqlite implementation
* Pagination support will be added in a future PR.
## Test Plan
Unit test on sql store:
<img width="1005" alt="image"
src="https://github.com/user-attachments/assets/9b8b7ec8-632b-4667-8127-5583426b2e29"
/>
Integration test:
```
INFERENCE_MODEL="llama3.2:3b-instruct-fp16" llama stack build --template ollama --image-type conda --run
```
```
LLAMA_STACK_CONFIG=http://localhost:5001 INFERENCE_MODEL="llama3.2:3b-instruct-fp16" python -m pytest -v tests/integration/inference/test_openai_completion.py --text-model "llama3.2:3b-instruct-fp16" -k 'inference_store and openai'
```
# What does this PR do?
Includes SambaNova safety adaptor to use the sambanova cloud served
Meta-Llama-Guard-3-8B
minor updates in sambanova docs
## Test Plan
pytest -s -v tests/integration/safety/test_safety.py
--stack-config=sambanova --safety-shield=sambanova/Meta-Llama-Guard-3-8B
# What does this PR do?
We now only print the 'active' routes, not all the possible routes. This
is based on the distribution server config by looking at enabled APIs
and their respective providers.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Not sure why it passed CI earlier...
Strange only 24 workflows run here
https://github.com/meta-llama/llama-stack/pull/2216 so the test never
ran...
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
This PR introduces support for keyword based FTS5 search with BM25
relevance scoring. It makes changes to the existing EmbeddingIndex base
class in order to support a search_mode and query_str parameter, that
can be used for keyword based search implementations.
[//]: # (If resolving an issue, uncomment and update the line below)
[//]: # (Closes #[issue-number])
## Test Plan
run
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
```
Output:
```
pytest llama_stack/providers/tests/vector_io/test_sqlite_vec.py -v -s --tb=short --disable-warnings --asyncio-mode=auto
/Users/vnarsing/miniconda3/envs/stack-client/lib/python3.10/site-packages/pytest_asyncio/plugin.py:207: PytestDeprecationWarning: The configuration option "asyncio_default_fixture_loop_scope" is unset.
The event loop scope for asynchronous fixtures will default to the fixture caching scope. Future versions of pytest-asyncio will default the loop scope for asynchronous fixtures to function scope. Set the default fixture loop scope explicitly in order to avoid unexpected behavior in the future. Valid fixture loop scopes are: "function", "class", "module", "package", "session"
warnings.warn(PytestDeprecationWarning(_DEFAULT_FIXTURE_LOOP_SCOPE_UNSET))
====================================================== test session starts =======================================================
platform darwin -- Python 3.10.16, pytest-8.3.4, pluggy-1.5.0 -- /Users/vnarsing/miniconda3/envs/stack-client/bin/python
cachedir: .pytest_cache
metadata: {'Python': '3.10.16', 'Platform': 'macOS-14.7.4-arm64-arm-64bit', 'Packages': {'pytest': '8.3.4', 'pluggy': '1.5.0'}, 'Plugins': {'html': '4.1.1', 'metadata': '3.1.1', 'asyncio': '0.25.3', 'anyio': '4.8.0'}}
rootdir: /Users/vnarsing/go/src/github/meta-llama/llama-stack
configfile: pyproject.toml
plugins: html-4.1.1, metadata-3.1.1, asyncio-0.25.3, anyio-4.8.0
asyncio: mode=auto, asyncio_default_fixture_loop_scope=None
collected 7 items
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_add_chunks PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_vector PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_query_chunks_fts PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_chunk_id_conflict PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_register_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_unregister_vector_db PASSED
llama_stack/providers/tests/vector_io/test_sqlite_vec.py::test_generate_chunk_id PASSED
```
For reference, with the implementation, the fts table looks like below:
```
Chunk ID: 9fbc39ce-c729-64a2-260f-c5ec9bb2a33e, Content: Sentence 0 from document 0
Chunk ID: 94062914-3e23-44cf-1e50-9e25821ba882, Content: Sentence 1 from document 0
Chunk ID: e6cfd559-4641-33ba-6ce1-7038226495eb, Content: Sentence 2 from document 0
Chunk ID: 1383af9b-f1f0-f417-4de5-65fe9456cc20, Content: Sentence 3 from document 0
Chunk ID: 2db19b1a-de14-353b-f4e1-085e8463361c, Content: Sentence 4 from document 0
Chunk ID: 9faf986a-f028-7714-068a-1c795e8f2598, Content: Sentence 5 from document 0
Chunk ID: ef593ead-5a4a-392f-7ad8-471a50f033e8, Content: Sentence 6 from document 0
Chunk ID: e161950f-021f-7300-4d05-3166738b94cf, Content: Sentence 7 from document 0
Chunk ID: 90610fc4-67c1-e740-f043-709c5978867a, Content: Sentence 8 from document 0
Chunk ID: 97712879-6fff-98ad-0558-e9f42e6b81d3, Content: Sentence 9 from document 0
Chunk ID: aea70411-51df-61ba-d2f0-cb2b5972c210, Content: Sentence 0 from document 1
Chunk ID: b678a463-7b84-92b8-abb2-27e9a1977e3c, Content: Sentence 1 from document 1
Chunk ID: 27bd63da-909c-1606-a109-75bdb9479882, Content: Sentence 2 from document 1
Chunk ID: a2ad49ad-f9be-5372-e0c7-7b0221d0b53e, Content: Sentence 3 from document 1
Chunk ID: cac53bcd-1965-082a-c0f4-ceee7323fc70, Content: Sentence 4 from document 1
```
Query results:
Result 1: Sentence 5 from document 0
Result 2: Sentence 5 from document 1
Result 3: Sentence 5 from document 2
[//]: # (## Documentation)
---------
Signed-off-by: Varsha Prasad Narsing <varshaprasad96@gmail.com>
# What does this PR do?
* remove requirements.txt to use pyproject.toml as the source of truth
* update relevant docs
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
Use a composite action to avoid similar steps repetitions and
centralization of the defaults.
Signed-off-by: Sébastien Han <seb@redhat.com>
# What does this PR do?
The cache_ttl config value is not in fact tied to the lifetime of any of
the keys, it represents the time interval between for our key cache
refresher.
Signed-off-by: Sébastien Han <seb@redhat.com>