All of the tests from `llama_stack/providers/tests/` are now moved to
`tests/integration`.
I converted the `tools`, `scoring` and `datasetio` tests to use API.
However, `eval` and `post_training` proved to be a bit challenging to
leaving those. I think `post_training` should be relatively
straightforward also.
As part of this, I noticed that `wolfram_alpha` tool wasn't added to
some of our commonly used distros so I added it. I am going to remove a
lot of code duplication from distros next so while this looks like a
one-off right now, it will go away and be there uniformly for all
distros.
Each model known to the system has two identifiers:
- the `provider_resource_id` (what the provider calls it) -- e.g.,
`accounts/fireworks/models/llama-v3p1-8b-instruct`
- the `identifier` (`model_id`) under which it is registered and gets
routed to the appropriate provider.
We have so far used the HuggingFace repo alias as the standardized
identifier you can use to refer to the model. So in the above example,
we'd use `meta-llama/Llama-3.1-8B-Instruct` as the name under which it
gets registered. This makes it convenient for users to refer to these
models across providers.
However, we forgot to register the _actual_ provider model ID also. You
should be able to route via `provider_resource_id` also, of course.
This change fixes this (somewhat grave) omission.
*Note*: this change is additive -- more aliases work now compared to
before.
## Test Plan
Run the following for distro=(ollama fireworks together)
```
LLAMA_STACK_CONFIG=$distro \
pytest -s -v tests/client-sdk/inference/test_text_inference.py \
--inference-model=meta-llama/Llama-3.1-8B-Instruct --vision-inference-model=""
```
# What does this PR do?
This changes all VectorIO providers classes to follow the pattern
`<ProviderName>VectorIOConfig` and `<ProviderName>VectorIOAdapter`. All
API endpoints for VectorIOs are currently consistent with `/vector-io`.
Note that API endpoint for VectorDB stay unchanged as `/vector-dbs`.
## Test Plan
I don't have a way to test all providers. This is a simple renaming so
things should work as expected.
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Addressed comment
https://github.com/meta-llama/llama-stack/pull/723#issuecomment-2581902075.
cc @yanxi0830
I am not 100% sure if the diff is correct though but this is the result
of running `python llama_stack/scripts/distro_codegen.py`.
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
Rename environment var for consistency
## Test Plan
No regressions
## Sources
## Before submitting
- [X] This PR fixes a typo or improves the docs (you can dismiss the
other checks if that's the case).
- [X] Ran pre-commit to handle lint / formatting issues.
- [X] Read the [contributor
guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md),
Pull Request section?
- [X] Updated relevant documentation.
- [ ] Wrote necessary unit or integration tests.
---------
Signed-off-by: Yuan Tang <terrytangyuan@gmail.com>
Co-authored-by: Yuan Tang <terrytangyuan@gmail.com>
# What does this PR do?
PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator
## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \
--safety-shield=meta-llama/Llama-Guard-3-8B \
--inference-model=meta-llama/Llama-3.1-8B-Instruct
LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994
Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
# What does this PR do?
Adds the sentence transformer provider and the `all-MiniLM-L6-v2`
embedding model to the default models to register in the run.yaml for
all providers.
## Test Plan
llama stack build --template together --image-type conda
llama stack run
~/.llama/distributions/llamastack-together/together-run.yaml
# What does this PR do?
Automatically generates
- build.yaml
- run.yaml
- run-with-safety.yaml
- parts of markdown docs
for the distributions.
## Test Plan
At this point, this only updates the YAMLs and the docs. Some testing
(especially with ollama and vllm) has been performed but needs to be
much more tested.