forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - Fix typo - Support Llama 3.3 70B ## Test Plan Run the following scripts and obtain the test results Script ``` pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming --env SAMBANOVA_API_KEY={API_KEY} ``` Result ``` llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_streaming[-sambanova] PASSED =========================================== 1 passed, 1 warning in 1.26s ============================================ ``` Script ``` pytest -s -v --providers inference=sambanova llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming --env SAMBANOVA_API_KEY={API_KEY} ``` Result ``` llama_stack/providers/tests/inference/test_text_inference.py::TestInference::test_chat_completion_non_streaming[-sambanova] PASSED =========================================== 1 passed, 1 warning in 0.52s ============================================ ``` ## Sources Please link relevant resources if necessary. ## Before submitting - [N] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [Y] Ran pre-commit to handle lint / formatting issues. - [Y] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [Y] Updated relevant documentation. - [N] Wrote necessary unit or integration tests.
2.1 KiB
2.1 KiB
orphan |
---|
true |
SambaNova Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-sambanova
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
inference | remote::sambanova |
safety | inline::llama-guard |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::rag-runtime |
vector_io | inline::faiss , remote::chromadb , remote::pgvector |
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT
: Port for the Llama Stack distribution server (default:5001
)SAMBANOVA_API_KEY
: SambaNova.AI API Key (default: ``)
Models
The following models are available by default:
meta-llama/Llama-3.1-8B-Instruct (Meta-Llama-3.1-8B-Instruct)
meta-llama/Llama-3.1-70B-Instruct (Meta-Llama-3.1-70B-Instruct)
meta-llama/Llama-3.1-405B-Instruct-FP8 (Meta-Llama-3.1-405B-Instruct)
meta-llama/Llama-3.2-1B-Instruct (Meta-Llama-3.2-1B-Instruct)
meta-llama/Llama-3.2-3B-Instruct (Meta-Llama-3.2-3B-Instruct)
meta-llama/Llama-3.2-11B-Vision-Instruct (Llama-3.2-11B-Vision-Instruct)
meta-llama/Llama-3.2-90B-Vision-Instruct (Llama-3.2-90B-Vision-Instruct)
Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting SambaNova.ai.
Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-sambanova \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
Via Conda
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY