llama-stack/docs/source/distributions/self_hosted_distro/sambanova.md
Ashwin Bharambe 04de2f84e9
fix: register provider model name and HF alias in run.yaml (#1304)
Each model known to the system has two identifiers: 

- the `provider_resource_id` (what the provider calls it) -- e.g.,
`accounts/fireworks/models/llama-v3p1-8b-instruct`
- the `identifier` (`model_id`) under which it is registered and gets
routed to the appropriate provider.

We have so far used the HuggingFace repo alias as the standardized
identifier you can use to refer to the model. So in the above example,
we'd use `meta-llama/Llama-3.1-8B-Instruct` as the name under which it
gets registered. This makes it convenient for users to refer to these
models across providers.

However, we forgot to register the _actual_ provider model ID also. You
should be able to route via `provider_resource_id` also, of course.

This change fixes this (somewhat grave) omission.

*Note*: this change is additive -- more aliases work now compared to
before.

## Test Plan

Run the following for distro=(ollama fireworks together)
```
LLAMA_STACK_CONFIG=$distro \
   pytest -s -v tests/client-sdk/inference/test_text_inference.py \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct --vision-inference-model=""
```
2025-02-27 16:39:23 -08:00

2.4 KiB

orphan
true

SambaNova Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-sambanova distribution consists of the following provider configurations.

API Provider(s)
agents inline::meta-reference
inference remote::sambanova
safety inline::llama-guard
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::rag-runtime
vector_io inline::faiss, remote::chromadb, remote::pgvector

Environment Variables

The following environment variables can be configured:

  • LLAMASTACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • SAMBANOVA_API_KEY: SambaNova.AI API Key (default: ``)

Models

The following models are available by default:

  • Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)
  • Meta-Llama-3.1-70B-Instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)
  • Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)
  • Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)
  • Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)
  • Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)
  • Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)
  • Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)
  • Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)

Prerequisite: API Keys

Make sure you have access to a SambaNova API Key. You can get one by visiting SambaNova.ai.

Running Llama Stack with SambaNova

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-sambanova \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY

Via Conda

llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
  --port $LLAMA_STACK_PORT \
  --env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY