4 KiB
TGI Distribution
The llamastack/distribution-tgi
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
inference | remote::tgi |
memory | inline::faiss , remote::chromadb , remote::pgvector |
safety | inline::llama-guard |
telemetry | inline::meta-reference |
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT
: Port for the Llama Stack distribution server (default:5001
)INFERENCE_MODEL
: Inference model loaded into the TGI server (default:meta-llama/Llama-3.2-3B-Instruct
)TGI_URL
: URL of the TGI server with the main inference model (default:http://127.0.0.1:8080}/v1
)TGI_SAFETY_URL
: URL of the TGI server with the safety model (default:http://127.0.0.1:8081/v1
)SAFETY_MODEL
: Name of the safety (Llama-Guard) model to use (default:meta-llama/Llama-Guard-3-1B
)
Setting up TGI server
Please check the TGI Getting Started Guide to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
export INFERENCE_PORT=8080
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--cuda-memory-fraction 0.7 \
--model-id $INFERENCE_MODEL \
--port $INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like meta-llama/Llama-Guard-3-1B
using a script like:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $SAFETY_PORT:$SAFETY_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--model-id $SAFETY_MODEL \
--port $SAFETY_PORT
Running Llama Stack
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-tgi \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-tgi \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
Via Conda
Make sure you have done pip install llama-stack
and have the Llama Stack CLI available.
llama stack build --template tgi --image-type conda
llama stack run ./run.yaml
--port 5001
--env INFERENCE_MODEL=$INFERENCE_MODEL
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run ./run-with-safety.yaml
--port 5001
--env INFERENCE_MODEL=$INFERENCE_MODEL
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
--env SAFETY_MODEL=$SAFETY_MODEL
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT