llama-stack/docs/source/building_applications/telemetry.md
2025-01-16 15:26:48 -08:00

7.5 KiB

Telemetry

The telemetry system is currently experimental and subject to change. We welcome feedback and contributions to help improve it.

The Llama Stack telemetry system provides comprehensive tracing, metrics, and logging capabilities. It supports multiple sink types including OpenTelemetry, SQLite, and Console output.

Key Concepts

Events

The telemetry system supports three main types of events:

  • Unstructured Log Events: Free-form log messages with severity levels
unstructured_log_event = UnstructuredLogEvent(
    message="This is a log message",
    severity=LogSeverity.INFO
)
  • Metric Events: Numerical measurements with units
metric_event = MetricEvent(
    metric="my_metric",
    value=10,
    unit="count"
)
  • Structured Log Events: System events like span start/end. Extensible to add more structured log types.
structured_log_event = SpanStartPayload(
    name="my_span",
    parent_span_id="parent_span_id"
)

Spans and Traces

  • Spans: Represent operations with timing and hierarchical relationships
  • Traces: Collection of related spans forming a complete request flow

Sinks

  • OpenTelemetry: Send events to an OpenTelemetry Collector. This is useful for visualizing traces in a tool like Jaeger.
  • SQLite: Store events in a local SQLite database. This is needed if you want to query the events later through the Llama Stack API.
  • Console: Print events to the console.

APIs

The telemetry API is designed to be flexible for different user flows like debugging/visualization in UI, monitoring, and saving traces to datasets. The telemetry system exposes the following HTTP endpoints:

Log Event

POST /telemetry/log-event

Logs a telemetry event (unstructured log, metric, or structured log) with optional TTL.

Query Traces

POST /telemetry/query-traces

Retrieves traces based on filters with pagination support. Parameters:

  • attribute_filters: List of conditions to filter traces
  • limit: Maximum number of traces to return (default: 100)
  • offset: Number of traces to skip (default: 0)
  • order_by: List of fields to sort by

Get Span Tree

POST /telemetry/get-span-tree

Retrieves a hierarchical view of spans starting from a specific span. Parameters:

  • span_id: ID of the root span to retrieve
  • attributes_to_return: Optional list of specific attributes to include
  • max_depth: Optional maximum depth of the span tree to return

Query Spans

POST /telemetry/query-spans

Retrieves spans matching specified filters and returns selected attributes. Parameters:

  • attribute_filters: List of conditions to filter traces
  • attributes_to_return: List of specific attributes to include in results
  • max_depth: Optional maximum depth of spans to traverse (default: no limit)

Returns a flattened list of spans with requested attributes.

Save Spans to Dataset

This is useful for saving traces to a dataset for running evaluations. For example, you can save the input/output of each span that is part of an agent session/turn to a dataset and then run an eval task on it. See example in Example: Save Spans to Dataset.

POST /telemetry/save-spans-to-dataset

Queries spans and saves their attributes to a dataset. Parameters:

  • attribute_filters: List of conditions to filter traces
  • attributes_to_save: List of span attributes to save to the dataset
  • dataset_id: ID of the dataset to save to
  • max_depth: Optional maximum depth of spans to traverse (default: no limit)

Providers

Meta-Reference Provider

Currently, only the meta-reference provider is implemented. It can be configured to send events to three sink types:

  1. OpenTelemetry Collector
  2. SQLite
  3. Console

Configuration

Here's an example that sends telemetry signals to all three sink types. Your configuration might use only one.

  telemetry:
  - provider_id: meta-reference
    provider_type: inline::meta-reference
    config:
      sinks: ['console', 'sqlite', 'otel']
      otel_endpoint: "http://localhost:4318/v1/traces"
      sqlite_db_path: "/path/to/telemetry.db"

Jaeger to visualize traces

The otel sink works with any service compatible with the OpenTelemetry collector. Let's use Jaeger to visualize this data.

Start a Jaeger instance with the OTLP HTTP endpoint at 4318 and the Jaeger UI at 16686 using the following command:

$ docker run --rm --name jaeger \
  -p 16686:16686 -p 4318:4318 \
  jaegertracing/jaeger:2.1.0

Once the Jaeger instance is running, you can visualize traces by navigating to http://localhost:16686/.

Querying Traces Stored in SQLIte

The sqlite sink allows you to query traces without an external system. Here are some example queries:

Querying Traces for a agent session The client SDK is not updated to support the new telemetry API. It will be updated soon. You can manually query traces using the following curl command:

 curl -X POST 'http://localhost:8321/alpha/telemetry/query-traces' \
-H 'Content-Type: application/json' \
-d '{
  "attribute_filters": [
    {
      "key": "session_id",
      "op": "eq",
      "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65" }],
  "limit": 100,
  "offset": 0,
  "order_by": ["start_time"]

  [
  {
    "trace_id": "6902f54b83b4b48be18a6f422b13e16f",
    "root_span_id": "5f37b85543afc15a",
    "start_time": "2024-12-04T08:08:30.501587",
    "end_time": "2024-12-04T08:08:36.026463"
  },
  ........
]
}'

Querying spans for a specifc root span id

curl -X POST 'http://localhost:8321/alpha/telemetry/get-span-tree' \
-H 'Content-Type: application/json' \
-d '{ "span_id" : "6cceb4b48a156913", "max_depth": 2 }'

{
  "span_id": "6cceb4b48a156913",
  "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
  "parent_span_id": "892a66d726c7f990",
  "name": "retrieve_rag_context",
  "start_time": "2024-12-04T09:28:21.781995",
  "end_time": "2024-12-04T09:28:21.913352",
  "attributes": {
    "input": [
      "{\"role\":\"system\",\"content\":\"You are a helpful assistant\"}",
      "{\"role\":\"user\",\"content\":\"What are the top 5 topics that were explained in the documentation? Only list succinct bullet points.\",\"context\":null}"
    ]
  },
  "children": [
    {
      "span_id": "1a2df181854064a8",
      "trace_id": "dafa796f6aaf925f511c04cd7c67fdda",
      "parent_span_id": "6cceb4b48a156913",
      "name": "MemoryRouter.query_documents",
      "start_time": "2024-12-04T09:28:21.787620",
      "end_time": "2024-12-04T09:28:21.906512",
      "attributes": {
        "input": null
      },
      "children": [],
      "status": "ok"
    }
  ],
  "status": "ok"
}

Example: Save Spans to Dataset

Save all spans for a specific agent session to a dataset.

curl -X POST 'http://localhost:8321/alpha/telemetry/save-spans-to-dataset' \
-H 'Content-Type: application/json' \
-d '{
    "attribute_filters": [
        {
            "key": "session_id",
            "op": "eq",
            "value": "dd667b87-ca4b-4d30-9265-5a0de318fc65"
        }
    ],
    "attributes_to_save": ["input", "output"],
    "dataset_id": "my_dataset",
    "max_depth": 10
}'

Save all spans for a specific agent turn to a dataset.

curl -X POST 'http://localhost:8321/alpha/telemetry/save-spans-to-dataset' \
-H 'Content-Type: application/json' \
-d '{
    "attribute_filters": [
        {
            "key": "turn_id",
            "op": "eq",
            "value": "123e4567-e89b-12d3-a456-426614174000"
        }
    ],
    "attributes_to_save": ["input", "output"],
    "dataset_id": "my_dataset",
    "max_depth": 10
}'