* move docs -> source * Add files via upload * mv image * Add files via upload * colocate iOS setup doc * delete image * Add files via upload * fix * delete image * Add files via upload * Update developer_cookbook.md * toctree * wip subfolder * docs update * subfolder * updates * name * updates * index * updates * refactor structure * depth * docs * content * docs * getting started * distributions * fireworks * fireworks * update * theme * theme * theme * pdj theme * pytorch theme * css * theme * agents example * format * index * headers * copy button * test tabs * test tabs * fix * tabs * tab * tabs * sphinx_design * quick start commands * size * width * css * css * download models * asthetic fix * tab format * update * css * width * css * docs * tab based * tab * tabs * docs * style * image * css * color * typo * update docs * missing links * list templates * links * links update * troubleshooting * fix * distributions * docs * fix table * kill llamastack-local-gpu/cpu * Update index.md * Update index.md * mv ios_setup.md * Update ios_setup.md * Add remote_or_local.gif * Update ios_setup.md * release notes * typos * Add ios_setup to index * nav bar * hide torctree * ios image * links update * rename * rename * docs * rename * links * distributions * distributions * distributions * distributions * remove release * remote --------- Co-authored-by: dltn <6599399+dltn@users.noreply.github.com> Co-authored-by: Ashwin Bharambe <ashwin.bharambe@gmail.com>
2.6 KiB
Meta Reference Distribution
The llamastack/distribution-meta-reference-gpu
distribution consists of the following provider configurations.
API | Inference | Agents | Memory | Safety | Telemetry |
---|---|---|---|---|---|
Provider(s) | meta-reference | meta-reference | meta-reference, remote::pgvector, remote::chroma | meta-reference | meta-reference |
Step 0. Prerequisite - Downloading Models
Please make sure you have llama model checkpoints downloaded in ~/.llama
before proceeding. See installation guide here to download the models.
$ ls ~/.llama/checkpoints
Llama3.1-8B Llama3.2-11B-Vision-Instruct Llama3.2-1B-Instruct Llama3.2-90B-Vision-Instruct Llama-Guard-3-8B
Llama3.1-8B-Instruct Llama3.2-1B Llama3.2-3B-Instruct Llama-Guard-3-1B Prompt-Guard-86M
Step 1. Start the Distribution
(Option 1) Start with Docker
$ cd distributions/meta-reference-gpu && docker compose up
Note
This assumes you have access to GPU to start a local server with access to your GPU.
Note
~/.llama
should be the path containing downloaded weights of Llama models.
This will download and start running a pre-built docker container. Alternatively, you may use the following commands:
docker run -it -p 5000:5000 -v ~/.llama:/root/.llama -v ./run.yaml:/root/my-run.yaml --gpus=all distribution-meta-reference-gpu --yaml_config /root/my-run.yaml
(Option 2) Start with Conda
-
Install the
llama
CLI. See CLI Reference -
Build the
meta-reference-gpu
distribution
$ llama stack build --template meta-reference-gpu --image-type conda
- Start running distribution
$ cd distributions/meta-reference-gpu
$ llama stack run ./run.yaml
(Optional) Serving a new model
You may change the config.model
in run.yaml
to update the model currently being served by the distribution. Make sure you have the model checkpoint downloaded in your ~/.llama
.
inference:
- provider_id: meta0
provider_type: meta-reference
config:
model: Llama3.2-11B-Vision-Instruct
quantization: null
torch_seed: null
max_seq_len: 4096
max_batch_size: 1
Run llama model list
to see the available models to download, and llama model download
to download the checkpoints.