llama-stack/docs/source/distributions/self_hosted_distro/ollama.md
Charlie Doern 1ae61e8d5f
fix: replace all instances of --yaml-config with --config (#2196)
# What does this PR do?

start_stack.sh was using --yaml-config which is deprecated.

a bunch of distro docs also mentioned --yaml-config. Replaces all
instances and logic for --yaml-config with --config

resolves #2189

Signed-off-by: Charlie Doern <cdoern@redhat.com>
2025-05-16 14:31:12 -07:00

163 lines
6.2 KiB
Markdown

---
orphan: true
---
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
# Ollama Distribution
```{toctree}
:maxdepth: 2
:hidden:
self
```
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
| API | Provider(s) |
|-----|-------------|
| agents | `inline::meta-reference` |
| datasetio | `remote::huggingface`, `inline::localfs` |
| eval | `inline::meta-reference` |
| inference | `remote::ollama` |
| safety | `inline::llama-guard` |
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
| telemetry | `inline::meta-reference` |
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime`, `remote::model-context-protocol`, `remote::wolfram-alpha` |
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.
### Environment Variables
The following environment variables can be configured:
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `8321`)
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
## Setting up Ollama server
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
In order to load models, you can run:
```bash
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
```
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
```bash
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
# ollama names this model differently, and we must use the ollama name when loading the model
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
```
## Running Llama Stack
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
### Via Docker
This method allows you to get started quickly without having to build the distribution code.
```bash
export LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
llamastack/distribution-ollama \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ~/.llama:/root/.llama \
-v ./llama_stack/templates/ollama/run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-ollama \
--config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://host.docker.internal:11434
```
### Via Conda
Make sure you have done `uv pip install llama-stack` and have the Llama Stack CLI available.
```bash
export LLAMA_STACK_PORT=8321
llama stack build --template ollama --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
If you are using Llama Stack Safety / Shield APIs, use:
```bash
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env OLLAMA_URL=http://localhost:11434
```
### (Optional) Update Model Serving Configuration
```{note}
Please check the [model_entries](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/models.py) for the supported Ollama models.
```
To serve a new model with `ollama`
```bash
ollama run <model_name>
```
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
```
$ ollama ps
NAME ID SIZE PROCESSOR UNTIL
llama3.2:3b-instruct-fp16 195a8c01d91e 8.6 GB 100% GPU 9 minutes from now
```
To verify that the model served by ollama is correctly connected to Llama Stack server
```bash
$ llama-stack-client models list
Available Models
┏━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┳━━━━━━━━━━━━━┓
┃ model_type ┃ identifier ┃ provider_resource_id ┃ metadata ┃ provider_id ┃
┡━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━╇━━━━━━━━━━━━━┩
│ llm │ meta-llama/Llama-3.2-3B-Instruct │ llama3.2:3b-instruct-fp16 │ │ ollama │
└──────────────┴──────────────────────────────────────┴──────────────────────────────┴───────────┴─────────────┘
Total models: 1
```