forked from phoenix-oss/llama-stack-mirror
Concurrent requests should not trample (or reuse) each others' provider data. Provider data should be scoped to each request. ## Test Plan Set the uvicorn server to have a single worker process + thread by updating the config: ```python uvicorn_config = { ... "workers": 1, "loop": "asyncio", } ``` Then perform the following steps on `origin/main` (without this change). (1) Run the server using `llama stack run dev` without having `FIREWORKS_API_KEY` in the environment. (2) Run a test by specifying the FIREWORKS_API_KEY env var so it gets stored in the thread local ``` pytest -s -v tests/integration/inference/test_text_inference.py \ --stack-config http://localhost:8321 \ --text-model accounts/fireworks/models/llama-v3p1-8b-instruct \ -k test_text_chat_completion_with_tool_calling_and_streaming \ --env FIREWORKS_API_KEY=<...> ``` Ensure you don't have any other API keys in the environment (otherwise the bug will not reproduce due to other specifics in our testing code.) Verify this works. (3) Run the same command again without specifying FIREWORKS_API_KEY. See that the request actually succeeds when it *should have failed*. ---- Now do the same tests on this branch, verify step (3) results in failure. Finally, run the full `test_text_inference.py` test suite with this change, verify it succeeds.
248 lines
9.2 KiB
Python
248 lines
9.2 KiB
Python
# Copyright (c) Meta Platforms, Inc. and affiliates.
|
|
# All rights reserved.
|
|
#
|
|
# This source code is licensed under the terms described in the LICENSE file in
|
|
# the root directory of this source tree.
|
|
|
|
from typing import AsyncGenerator, List, Optional, Union
|
|
|
|
from together import Together
|
|
|
|
from llama_stack.apis.common.content_types import (
|
|
InterleavedContent,
|
|
InterleavedContentItem,
|
|
)
|
|
from llama_stack.apis.inference import (
|
|
ChatCompletionRequest,
|
|
ChatCompletionResponse,
|
|
CompletionRequest,
|
|
EmbeddingsResponse,
|
|
EmbeddingTaskType,
|
|
Inference,
|
|
LogProbConfig,
|
|
Message,
|
|
ResponseFormat,
|
|
ResponseFormatType,
|
|
SamplingParams,
|
|
TextTruncation,
|
|
ToolChoice,
|
|
ToolConfig,
|
|
ToolDefinition,
|
|
ToolPromptFormat,
|
|
)
|
|
from llama_stack.distribution.request_headers import NeedsRequestProviderData
|
|
from llama_stack.log import get_logger
|
|
from llama_stack.providers.utils.inference.model_registry import ModelRegistryHelper
|
|
from llama_stack.providers.utils.inference.openai_compat import (
|
|
convert_message_to_openai_dict,
|
|
get_sampling_options,
|
|
process_chat_completion_response,
|
|
process_chat_completion_stream_response,
|
|
process_completion_response,
|
|
process_completion_stream_response,
|
|
)
|
|
from llama_stack.providers.utils.inference.prompt_adapter import (
|
|
chat_completion_request_to_prompt,
|
|
completion_request_to_prompt,
|
|
content_has_media,
|
|
interleaved_content_as_str,
|
|
request_has_media,
|
|
)
|
|
|
|
from .config import TogetherImplConfig
|
|
from .models import MODEL_ENTRIES
|
|
|
|
logger = get_logger(name=__name__, category="inference")
|
|
|
|
|
|
class TogetherInferenceAdapter(ModelRegistryHelper, Inference, NeedsRequestProviderData):
|
|
def __init__(self, config: TogetherImplConfig) -> None:
|
|
ModelRegistryHelper.__init__(self, MODEL_ENTRIES)
|
|
self.config = config
|
|
|
|
async def initialize(self) -> None:
|
|
pass
|
|
|
|
async def shutdown(self) -> None:
|
|
pass
|
|
|
|
async def completion(
|
|
self,
|
|
model_id: str,
|
|
content: InterleavedContent,
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = CompletionRequest(
|
|
model=model.provider_resource_id,
|
|
content=content,
|
|
sampling_params=sampling_params,
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
)
|
|
if stream:
|
|
return self._stream_completion(request)
|
|
else:
|
|
return await self._nonstream_completion(request)
|
|
|
|
def _get_client(self) -> Together:
|
|
together_api_key = None
|
|
config_api_key = self.config.api_key.get_secret_value() if self.config.api_key else None
|
|
if config_api_key:
|
|
together_api_key = config_api_key
|
|
else:
|
|
provider_data = self.get_request_provider_data()
|
|
if provider_data is None or not provider_data.together_api_key:
|
|
raise ValueError(
|
|
'Pass Together API Key in the header X-LlamaStack-Provider-Data as { "together_api_key": <your api key>}'
|
|
)
|
|
together_api_key = provider_data.together_api_key
|
|
return Together(api_key=together_api_key)
|
|
|
|
async def _nonstream_completion(self, request: CompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
r = self._get_client().completions.create(**params)
|
|
return process_completion_response(r)
|
|
|
|
async def _stream_completion(self, request: CompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
|
async def _to_async_generator():
|
|
s = self._get_client().completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_completion_stream_response(stream):
|
|
yield chunk
|
|
|
|
def _build_options(
|
|
self,
|
|
sampling_params: Optional[SamplingParams],
|
|
logprobs: Optional[LogProbConfig],
|
|
fmt: ResponseFormat,
|
|
) -> dict:
|
|
options = get_sampling_options(sampling_params)
|
|
if fmt:
|
|
if fmt.type == ResponseFormatType.json_schema.value:
|
|
options["response_format"] = {
|
|
"type": "json_object",
|
|
"schema": fmt.json_schema,
|
|
}
|
|
elif fmt.type == ResponseFormatType.grammar.value:
|
|
raise NotImplementedError("Grammar response format not supported yet")
|
|
else:
|
|
raise ValueError(f"Unknown response format {fmt.type}")
|
|
|
|
if logprobs and logprobs.top_k:
|
|
if logprobs.top_k != 1:
|
|
raise ValueError(
|
|
f"Unsupported value: Together only supports logprobs top_k=1. {logprobs.top_k} was provided",
|
|
)
|
|
options["logprobs"] = 1
|
|
|
|
return options
|
|
|
|
async def chat_completion(
|
|
self,
|
|
model_id: str,
|
|
messages: List[Message],
|
|
sampling_params: Optional[SamplingParams] = None,
|
|
tools: Optional[List[ToolDefinition]] = None,
|
|
tool_choice: Optional[ToolChoice] = ToolChoice.auto,
|
|
tool_prompt_format: Optional[ToolPromptFormat] = None,
|
|
response_format: Optional[ResponseFormat] = None,
|
|
stream: Optional[bool] = False,
|
|
logprobs: Optional[LogProbConfig] = None,
|
|
tool_config: Optional[ToolConfig] = None,
|
|
) -> AsyncGenerator:
|
|
if sampling_params is None:
|
|
sampling_params = SamplingParams()
|
|
model = await self.model_store.get_model(model_id)
|
|
request = ChatCompletionRequest(
|
|
model=model.provider_resource_id,
|
|
messages=messages,
|
|
sampling_params=sampling_params,
|
|
tools=tools or [],
|
|
response_format=response_format,
|
|
stream=stream,
|
|
logprobs=logprobs,
|
|
tool_config=tool_config,
|
|
)
|
|
|
|
if stream:
|
|
return self._stream_chat_completion(request)
|
|
else:
|
|
return await self._nonstream_chat_completion(request)
|
|
|
|
async def _nonstream_chat_completion(self, request: ChatCompletionRequest) -> ChatCompletionResponse:
|
|
params = await self._get_params(request)
|
|
if "messages" in params:
|
|
r = self._get_client().chat.completions.create(**params)
|
|
else:
|
|
r = self._get_client().completions.create(**params)
|
|
return process_chat_completion_response(r, request)
|
|
|
|
async def _stream_chat_completion(self, request: ChatCompletionRequest) -> AsyncGenerator:
|
|
params = await self._get_params(request)
|
|
|
|
# if we shift to TogetherAsyncClient, we won't need this wrapper
|
|
async def _to_async_generator():
|
|
if "messages" in params:
|
|
s = self._get_client().chat.completions.create(**params)
|
|
else:
|
|
s = self._get_client().completions.create(**params)
|
|
for chunk in s:
|
|
yield chunk
|
|
|
|
stream = _to_async_generator()
|
|
async for chunk in process_chat_completion_stream_response(stream, request):
|
|
yield chunk
|
|
|
|
async def _get_params(self, request: Union[ChatCompletionRequest, CompletionRequest]) -> dict:
|
|
input_dict = {}
|
|
media_present = request_has_media(request)
|
|
llama_model = self.get_llama_model(request.model)
|
|
if isinstance(request, ChatCompletionRequest):
|
|
if media_present or not llama_model:
|
|
input_dict["messages"] = [await convert_message_to_openai_dict(m) for m in request.messages]
|
|
else:
|
|
input_dict["prompt"] = await chat_completion_request_to_prompt(request, llama_model)
|
|
else:
|
|
assert not media_present, "Together does not support media for Completion requests"
|
|
input_dict["prompt"] = await completion_request_to_prompt(request)
|
|
|
|
params = {
|
|
"model": request.model,
|
|
**input_dict,
|
|
"stream": request.stream,
|
|
**self._build_options(request.sampling_params, request.logprobs, request.response_format),
|
|
}
|
|
logger.debug(f"params to together: {params}")
|
|
return params
|
|
|
|
async def embeddings(
|
|
self,
|
|
model_id: str,
|
|
contents: List[str] | List[InterleavedContentItem],
|
|
text_truncation: Optional[TextTruncation] = TextTruncation.none,
|
|
output_dimension: Optional[int] = None,
|
|
task_type: Optional[EmbeddingTaskType] = None,
|
|
) -> EmbeddingsResponse:
|
|
model = await self.model_store.get_model(model_id)
|
|
assert all(not content_has_media(content) for content in contents), (
|
|
"Together does not support media for embeddings"
|
|
)
|
|
r = self._get_client().embeddings.create(
|
|
model=model.provider_resource_id,
|
|
input=[interleaved_content_as_str(content) for content in contents],
|
|
)
|
|
embeddings = [item.embedding for item in r.data]
|
|
return EmbeddingsResponse(embeddings=embeddings)
|