forked from phoenix-oss/llama-stack-mirror
# What does this PR do? PR #639 introduced the notion of Tools API and ability to invoke tools through API just as any resource. This PR changes the Agents to start using the Tools API to invoke tools. Major changes include: 1) Ability to specify tool groups with AgentConfig 2) Agent gets the corresponding tool definitions for the specified tools and pass along to the model 3) Attachements are now named as Documents and their behavior is mostly unchanged from user perspective 4) You can specify args that can be injected to a tool call through Agent config. This is especially useful in case of memory tool, where you want the tool to operate on a specific memory bank. 5) You can also register tool groups with args, which lets the agent inject these as well into the tool call. 6) All tests have been migrated to use new tools API and fixtures including client SDK tests 7) Telemetry just works with tools API because of our trace protocol decorator ## Test Plan ``` pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct pytest -s -v -k together llama_stack/providers/tests/tools/test_tools.py \ --safety-shield=meta-llama/Llama-Guard-3-8B \ --inference-model=meta-llama/Llama-3.1-8B-Instruct LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py ``` run.yaml: https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994 Notebook: https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
150 lines
5.1 KiB
Markdown
150 lines
5.1 KiB
Markdown
---
|
|
orphan: true
|
|
---
|
|
# Ollama Distribution
|
|
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| datasetio | `remote::huggingface`, `inline::localfs` |
|
|
| eval | `inline::meta-reference` |
|
|
| inference | `remote::ollama` |
|
|
| memory | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
|
| safety | `inline::llama-guard` |
|
|
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
|
|
|
|
|
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `LLAMASTACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
|
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
|
|
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
|
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
|
|
|
|
|
|
## Setting up Ollama server
|
|
|
|
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
|
|
|
|
In order to load models, you can run:
|
|
|
|
```bash
|
|
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
|
|
|
|
# ollama names this model differently, and we must use the ollama name when loading the model
|
|
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
|
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
|
|
|
|
```bash
|
|
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
|
|
|
|
# ollama names this model differently, and we must use the ollama name when loading the model
|
|
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
|
|
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
|
|
```
|
|
|
|
## Running Llama Stack
|
|
|
|
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
export LLAMA_STACK_PORT=5001
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ~/.llama:/root/.llama \
|
|
llamastack/distribution-ollama \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env OLLAMA_URL=http://host.docker.internal:11434
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ~/.llama:/root/.llama \
|
|
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-ollama \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env OLLAMA_URL=http://host.docker.internal:11434
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
|
|
|
```bash
|
|
export LLAMA_STACK_PORT=5001
|
|
|
|
llama stack build --template ollama --image-type conda
|
|
llama stack run ./run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env OLLAMA_URL=http://localhost:11434
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
llama stack run ./run-with-safety.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env OLLAMA_URL=http://localhost:11434
|
|
```
|
|
|
|
|
|
### (Optional) Update Model Serving Configuration
|
|
|
|
```{note}
|
|
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
|
|
```
|
|
|
|
To serve a new model with `ollama`
|
|
```bash
|
|
ollama run <model_name>
|
|
```
|
|
|
|
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
|
|
```
|
|
$ ollama ps
|
|
|
|
NAME ID SIZE PROCESSOR UNTIL
|
|
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
|
```
|
|
|
|
To verify that the model served by ollama is correctly connected to Llama Stack server
|
|
```bash
|
|
$ llama-stack-client models list
|
|
+----------------------+----------------------+---------------+-----------------------------------------------+
|
|
| identifier | llama_model | provider_id | metadata |
|
|
+======================+======================+===============+===============================================+
|
|
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
|
|
+----------------------+----------------------+---------------+-----------------------------------------------+
|
|
```
|