forked from phoenix-oss/llama-stack-mirror
Was removed in https://github.com/meta-llama/llama-stack/pull/2087 Signed-off-by: Sébastien Han <seb@redhat.com>
190 lines
5.9 KiB
Markdown
190 lines
5.9 KiB
Markdown
---
|
|
orphan: true
|
|
---
|
|
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
|
|
|
# Dell Distribution of Llama Stack
|
|
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-dell` distribution consists of the following provider configurations.
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| datasetio | `remote::huggingface`, `inline::localfs` |
|
|
| eval | `inline::meta-reference` |
|
|
| inference | `remote::tgi`, `inline::sentence-transformers` |
|
|
| safety | `inline::llama-guard` |
|
|
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::rag-runtime` |
|
|
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
|
|
|
|
|
You can use this distribution if you have GPUs and want to run an independent TGI or Dell Enterprise Hub container for running inference.
|
|
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `DEH_URL`: URL for the Dell inference server (default: `http://0.0.0.0:8181`)
|
|
- `DEH_SAFETY_URL`: URL for the Dell safety inference server (default: `http://0.0.0.0:8282`)
|
|
- `CHROMA_URL`: URL for the Chroma server (default: `http://localhost:6601`)
|
|
- `INFERENCE_MODEL`: Inference model loaded into the TGI server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
|
- `SAFETY_MODEL`: Name of the safety (Llama-Guard) model to use (default: `meta-llama/Llama-Guard-3-1B`)
|
|
|
|
|
|
## Setting up Inference server using Dell Enterprise Hub's custom TGI container.
|
|
|
|
NOTE: This is a placeholder to run inference with TGI. This will be updated to use [Dell Enterprise Hub's containers](https://dell.huggingface.co/authenticated/models) once verified.
|
|
|
|
```bash
|
|
export INFERENCE_PORT=8181
|
|
export DEH_URL=http://0.0.0.0:$INFERENCE_PORT
|
|
export INFERENCE_MODEL=meta-llama/Llama-3.1-8B-Instruct
|
|
export CHROMADB_HOST=localhost
|
|
export CHROMADB_PORT=6601
|
|
export CHROMA_URL=http://$CHROMADB_HOST:$CHROMADB_PORT
|
|
export CUDA_VISIBLE_DEVICES=0
|
|
export LLAMA_STACK_PORT=8321
|
|
|
|
docker run --rm -it \
|
|
--pull always \
|
|
--network host \
|
|
-v $HOME/.cache/huggingface:/data \
|
|
-e HF_TOKEN=$HF_TOKEN \
|
|
-p $INFERENCE_PORT:$INFERENCE_PORT \
|
|
--gpus $CUDA_VISIBLE_DEVICES \
|
|
ghcr.io/huggingface/text-generation-inference \
|
|
--dtype bfloat16 \
|
|
--usage-stats off \
|
|
--sharded false \
|
|
--cuda-memory-fraction 0.7 \
|
|
--model-id $INFERENCE_MODEL \
|
|
--port $INFERENCE_PORT --hostname 0.0.0.0
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like `meta-llama/Llama-Guard-3-1B` using a script like:
|
|
|
|
```bash
|
|
export SAFETY_INFERENCE_PORT=8282
|
|
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
|
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
|
export CUDA_VISIBLE_DEVICES=1
|
|
|
|
docker run --rm -it \
|
|
--pull always \
|
|
--network host \
|
|
-v $HOME/.cache/huggingface:/data \
|
|
-e HF_TOKEN=$HF_TOKEN \
|
|
-p $SAFETY_INFERENCE_PORT:$SAFETY_INFERENCE_PORT \
|
|
--gpus $CUDA_VISIBLE_DEVICES \
|
|
ghcr.io/huggingface/text-generation-inference \
|
|
--dtype bfloat16 \
|
|
--usage-stats off \
|
|
--sharded false \
|
|
--cuda-memory-fraction 0.7 \
|
|
--model-id $SAFETY_MODEL \
|
|
--hostname 0.0.0.0 \
|
|
--port $SAFETY_INFERENCE_PORT
|
|
```
|
|
|
|
## Dell distribution relies on ChromaDB for vector database usage
|
|
|
|
You can start a chroma-db easily using docker.
|
|
```bash
|
|
# This is where the indices are persisted
|
|
mkdir -p $HOME/chromadb
|
|
|
|
podman run --rm -it \
|
|
--network host \
|
|
--name chromadb \
|
|
-v $HOME/chromadb:/chroma/chroma \
|
|
-e IS_PERSISTENT=TRUE \
|
|
chromadb/chroma:latest \
|
|
--port $CHROMADB_PORT \
|
|
--host $CHROMADB_HOST
|
|
```
|
|
|
|
## Running Llama Stack
|
|
|
|
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
docker run -it \
|
|
--pull always \
|
|
--network host \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v $HOME/.llama:/root/.llama \
|
|
# NOTE: mount the llama-stack / llama-model directories if testing local changes else not needed
|
|
-v /home/hjshah/git/llama-stack:/app/llama-stack-source -v /home/hjshah/git/llama-models:/app/llama-models-source \
|
|
# localhost/distribution-dell:dev if building / testing locally
|
|
llamastack/distribution-dell\
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
# You need a local checkout of llama-stack to run this, get it using
|
|
# git clone https://github.com/meta-llama/llama-stack.git
|
|
cd /path/to/llama-stack
|
|
|
|
export SAFETY_INFERENCE_PORT=8282
|
|
export DEH_SAFETY_URL=http://0.0.0.0:$SAFETY_INFERENCE_PORT
|
|
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
|
|
|
|
docker run \
|
|
-it \
|
|
--pull always \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v $HOME/.llama:/root/.llama \
|
|
-v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-dell \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
|
|
|
```bash
|
|
llama stack build --template dell --image-type conda
|
|
llama stack run dell
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
llama stack run ./run-with-safety.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env DEH_URL=$DEH_URL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env DEH_SAFETY_URL=$DEH_SAFETY_URL \
|
|
--env CHROMA_URL=$CHROMA_URL
|
|
```
|