forked from phoenix-oss/llama-stack-mirror
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
75 lines
2.1 KiB
Markdown
75 lines
2.1 KiB
Markdown
# Bedrock Distribution
|
|
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-bedrock` distribution consists of the following provider configurations:
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| datasetio | `remote::huggingface`, `inline::localfs` |
|
|
| eval | `inline::meta-reference` |
|
|
| inference | `remote::bedrock` |
|
|
| safety | `remote::bedrock` |
|
|
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime`, `remote::model-context-protocol` |
|
|
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
|
|
|
|
|
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
|
|
|
### Models
|
|
|
|
The following models are available by default:
|
|
|
|
- `meta-llama/Llama-3.1-8B-Instruct (meta.llama3-1-8b-instruct-v1:0)`
|
|
- `meta-llama/Llama-3.1-70B-Instruct (meta.llama3-1-70b-instruct-v1:0)`
|
|
- `meta-llama/Llama-3.1-405B-Instruct-FP8 (meta.llama3-1-405b-instruct-v1:0)`
|
|
|
|
|
|
### Prerequisite: API Keys
|
|
|
|
Make sure you have access to a AWS Bedrock API Key. You can get one by visiting [AWS Bedrock](https://aws.amazon.com/bedrock/).
|
|
|
|
|
|
## Running Llama Stack with AWS Bedrock
|
|
|
|
You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
LLAMA_STACK_PORT=5001
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
llamastack/distribution-bedrock \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
|
|
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
|
|
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
```bash
|
|
llama stack build --template bedrock --image-type conda
|
|
llama stack run ./run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
|
|
--env AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
|
|
--env AWS_SESSION_TOKEN=$AWS_SESSION_TOKEN
|
|
```
|