forked from phoenix-oss/llama-stack-mirror
See https://github.com/meta-llama/llama-stack/issues/827 for the broader design. This PR finishes off all the stragglers and migrates everything to the new naming.
150 lines
5.1 KiB
Markdown
150 lines
5.1 KiB
Markdown
---
|
|
orphan: true
|
|
---
|
|
# Ollama Distribution
|
|
|
|
```{toctree}
|
|
:maxdepth: 2
|
|
:hidden:
|
|
|
|
self
|
|
```
|
|
|
|
The `llamastack/distribution-ollama` distribution consists of the following provider configurations.
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| datasetio | `remote::huggingface`, `inline::localfs` |
|
|
| eval | `inline::meta-reference` |
|
|
| inference | `remote::ollama` |
|
|
| safety | `inline::llama-guard` |
|
|
| scoring | `inline::basic`, `inline::llm-as-judge`, `inline::braintrust` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `remote::brave-search`, `remote::tavily-search`, `inline::code-interpreter`, `inline::memory-runtime` |
|
|
| vector_io | `inline::faiss`, `remote::chromadb`, `remote::pgvector` |
|
|
|
|
|
|
You should use this distribution if you have a regular desktop machine without very powerful GPUs. Of course, if you have powerful GPUs, you can still continue using this distribution since Ollama supports GPU acceleration.### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `LLAMA_STACK_PORT`: Port for the Llama Stack distribution server (default: `5001`)
|
|
- `OLLAMA_URL`: URL of the Ollama server (default: `http://127.0.0.1:11434`)
|
|
- `INFERENCE_MODEL`: Inference model loaded into the Ollama server (default: `meta-llama/Llama-3.2-3B-Instruct`)
|
|
- `SAFETY_MODEL`: Safety model loaded into the Ollama server (default: `meta-llama/Llama-Guard-3-1B`)
|
|
|
|
|
|
## Setting up Ollama server
|
|
|
|
Please check the [Ollama Documentation](https://github.com/ollama/ollama) on how to install and run Ollama. After installing Ollama, you need to run `ollama serve` to start the server.
|
|
|
|
In order to load models, you can run:
|
|
|
|
```bash
|
|
export INFERENCE_MODEL="meta-llama/Llama-3.2-3B-Instruct"
|
|
|
|
# ollama names this model differently, and we must use the ollama name when loading the model
|
|
export OLLAMA_INFERENCE_MODEL="llama3.2:3b-instruct-fp16"
|
|
ollama run $OLLAMA_INFERENCE_MODEL --keepalive 60m
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, you will also need to pull and run the safety model.
|
|
|
|
```bash
|
|
export SAFETY_MODEL="meta-llama/Llama-Guard-3-1B"
|
|
|
|
# ollama names this model differently, and we must use the ollama name when loading the model
|
|
export OLLAMA_SAFETY_MODEL="llama-guard3:1b"
|
|
ollama run $OLLAMA_SAFETY_MODEL --keepalive 60m
|
|
```
|
|
|
|
## Running Llama Stack
|
|
|
|
Now you are ready to run Llama Stack with Ollama as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
export LLAMA_STACK_PORT=5001
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ~/.llama:/root/.llama \
|
|
llamastack/distribution-ollama \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env OLLAMA_URL=http://host.docker.internal:11434
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
docker run \
|
|
-it \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ~/.llama:/root/.llama \
|
|
-v ./run-with-safety.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-ollama \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env OLLAMA_URL=http://host.docker.internal:11434
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
Make sure you have done `pip install llama-stack` and have the Llama Stack CLI available.
|
|
|
|
```bash
|
|
export LLAMA_STACK_PORT=5001
|
|
|
|
llama stack build --template ollama --image-type conda
|
|
llama stack run ./run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env OLLAMA_URL=http://localhost:11434
|
|
```
|
|
|
|
If you are using Llama Stack Safety / Shield APIs, use:
|
|
|
|
```bash
|
|
llama stack run ./run-with-safety.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL \
|
|
--env SAFETY_MODEL=$SAFETY_MODEL \
|
|
--env OLLAMA_URL=http://localhost:11434
|
|
```
|
|
|
|
|
|
### (Optional) Update Model Serving Configuration
|
|
|
|
```{note}
|
|
Please check the [model_aliases](https://github.com/meta-llama/llama-stack/blob/main/llama_stack/providers/remote/inference/ollama/ollama.py#L45) for the supported Ollama models.
|
|
```
|
|
|
|
To serve a new model with `ollama`
|
|
```bash
|
|
ollama run <model_name>
|
|
```
|
|
|
|
To make sure that the model is being served correctly, run `ollama ps` to get a list of models being served by ollama.
|
|
```
|
|
$ ollama ps
|
|
|
|
NAME ID SIZE PROCESSOR UNTIL
|
|
llama3.1:8b-instruct-fp16 4aacac419454 17 GB 100% GPU 4 minutes from now
|
|
```
|
|
|
|
To verify that the model served by ollama is correctly connected to Llama Stack server
|
|
```bash
|
|
$ llama-stack-client models list
|
|
+----------------------+----------------------+---------------+-----------------------------------------------+
|
|
| identifier | llama_model | provider_id | metadata |
|
|
+======================+======================+===============+===============================================+
|
|
| Llama3.1-8B-Instruct | Llama3.1-8B-Instruct | ollama0 | {'ollama_model': 'llama3.1:8b-instruct-fp16'} |
|
|
+----------------------+----------------------+---------------+-----------------------------------------------+
|
|
```
|