forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - add llama3.3 model for together - fix fireworks distro_codegen ``` python llama_stack/scripts/distro_codegen.py ``` ## Test Plan <img width="1132" alt="image" src="https://github.com/user-attachments/assets/bf94b933-9200-4e73-878e-d1a95d450a88" /> **Tests** ``` pytest -v -s -k "together" --inference-model="meta-llama/Llama-3.3-70B-Instruct" ./llama_stack/providers/tests/inference/test_text_inference.py ``` <img width="1139" alt="image" src="https://github.com/user-attachments/assets/407dc98b-8de3-4841-8cb1-75e4b5128544" /> ## Sources Please link relevant resources if necessary. ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
2.4 KiB
2.4 KiB
orphan |
---|
true |
Fireworks Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-fireworks
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | remote::fireworks |
memory | inline::faiss , remote::chromadb , remote::pgvector |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT
: Port for the Llama Stack distribution server (default:5001
)FIREWORKS_API_KEY
: Fireworks.AI API Key (default: ``)
Models
The following models are available by default:
meta-llama/Llama-3.1-8B-Instruct (fireworks/llama-v3p1-8b-instruct)
meta-llama/Llama-3.1-70B-Instruct (fireworks/llama-v3p1-70b-instruct)
meta-llama/Llama-3.1-405B-Instruct-FP8 (fireworks/llama-v3p1-405b-instruct)
meta-llama/Llama-3.2-1B-Instruct (fireworks/llama-v3p2-1b-instruct)
meta-llama/Llama-3.2-3B-Instruct (fireworks/llama-v3p2-3b-instruct)
meta-llama/Llama-3.2-11B-Vision-Instruct (fireworks/llama-v3p2-11b-vision-instruct)
meta-llama/Llama-3.2-90B-Vision-Instruct (fireworks/llama-v3p2-90b-vision-instruct)
meta-llama/Llama-3.3-70B-Instruct (fireworks/llama-v3p3-70b-instruct)
meta-llama/Llama-Guard-3-8B (fireworks/llama-guard-3-8b)
meta-llama/Llama-Guard-3-11B-Vision (fireworks/llama-guard-3-11b-vision)
Prerequisite: API Keys
Make sure you have access to a Fireworks API Key. You can get one by visiting fireworks.ai.
Running Llama Stack with Fireworks
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-fireworks \
--port $LLAMA_STACK_PORT \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY
Via Conda
llama stack build --template fireworks --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env FIREWORKS_API_KEY=$FIREWORKS_API_KEY