llama-stack/llama_stack/templates/tgi/doc_template.md
Ashwin Bharambe 5b1e69e58e
Use uv pip install instead of pip install (#921)
## What does this PR do? 

See issue: #747 -- `uv` is just plain better. This PR does the bare
minimum of replacing `pip install` by `uv pip install` and ensuring `uv`
exists in the environment.

## Test Plan 

First: create new conda, `uv pip install -e .` on `llama-stack` -- all
is good.
Next: run `llama stack build --template together` followed by `llama
stack run together` -- all good
Next: run `llama stack build --template together --image-name yoyo`
followed by `llama stack run together --image-name yoyo` -- all good
Next: fresh conda and `uv pip install -e .` and `llama stack build
--template together --image-type venv` -- all good.

Docker: `llama stack build --template together --image-type container`
works!
2025-01-31 22:29:41 -08:00

3.8 KiB

orphan
true

TGI Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-{{ name }} distribution consists of the following provider configurations.

{{ providers_table }}

You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.

{% if run_config_env_vars %}

Environment Variables

The following environment variables can be configured:

{% for var, (default_value, description) in run_config_env_vars.items() %}

  • {{ var }}: {{ description }} (default: {{ default_value }}) {% endfor %} {% endif %}

Setting up TGI server

Please check the TGI Getting Started Guide to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:

export INFERENCE_PORT=8080
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0

docker run --rm -it \
  -v $HOME/.cache/huggingface:/data \
  -p $INFERENCE_PORT:$INFERENCE_PORT \
  --gpus $CUDA_VISIBLE_DEVICES \
  ghcr.io/huggingface/text-generation-inference:2.3.1 \
  --dtype bfloat16 \
  --usage-stats off \
  --sharded false \
  --cuda-memory-fraction 0.7 \
  --model-id $INFERENCE_MODEL \
  --port $INFERENCE_PORT

If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like meta-llama/Llama-Guard-3-1B using a script like:

export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1

docker run --rm -it \
  -v $HOME/.cache/huggingface:/data \
  -p $SAFETY_PORT:$SAFETY_PORT \
  --gpus $CUDA_VISIBLE_DEVICES \
  ghcr.io/huggingface/text-generation-inference:2.3.1 \
  --dtype bfloat16 \
  --usage-stats off \
  --sharded false \
  --model-id $SAFETY_MODEL \
  --port $SAFETY_PORT

Running Llama Stack

Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  llamastack/distribution-{{ name }} \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT

If you are using Llama Stack Safety / Shield APIs, use:

# You need a local checkout of llama-stack to run this, get it using
# git clone https://github.com/meta-llama/llama-stack.git
cd /path/to/llama-stack

docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  -v ./llama_stack/templates/tgi/run-with-safety.yaml:/root/my-run.yaml \
  llamastack/distribution-{{ name }} \
  --yaml-config /root/my-run.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
  --env SAFETY_MODEL=$SAFETY_MODEL \
  --env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT

Via Conda

Make sure you have done uv pip install llama-stack and have the Llama Stack CLI available.

llama stack build --template {{ name }} --image-type conda
llama stack run ./run.yaml
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT

If you are using Llama Stack Safety / Shield APIs, use:

llama stack run ./run-with-safety.yaml \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=$INFERENCE_MODEL \
  --env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
  --env SAFETY_MODEL=$SAFETY_MODEL \
  --env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT