forked from phoenix-oss/llama-stack-mirror
86 lines
3.1 KiB
Markdown
86 lines
3.1 KiB
Markdown
<!-- This file was auto-generated by distro_codegen.py, please edit source -->
|
|
# NVIDIA Distribution
|
|
|
|
The `llamastack/distribution-nvidia` distribution consists of the following provider configurations.
|
|
|
|
| API | Provider(s) |
|
|
|-----|-------------|
|
|
| agents | `inline::meta-reference` |
|
|
| datasetio | `inline::localfs` |
|
|
| inference | `remote::nvidia` |
|
|
| post_training | `remote::nvidia` |
|
|
| safety | `remote::nvidia` |
|
|
| telemetry | `inline::meta-reference` |
|
|
| tool_runtime | `inline::rag-runtime` |
|
|
| vector_io | `inline::faiss` |
|
|
|
|
|
|
### Environment Variables
|
|
|
|
The following environment variables can be configured:
|
|
|
|
- `NVIDIA_API_KEY`: NVIDIA API Key (default: ``)
|
|
- `NVIDIA_USER_ID`: NVIDIA User ID (default: `llama-stack-user`)
|
|
- `NVIDIA_DATASET_NAMESPACE`: NVIDIA Dataset Namespace (default: `default`)
|
|
- `NVIDIA_ACCESS_POLICIES`: NVIDIA Access Policies (default: `{}`)
|
|
- `NVIDIA_PROJECT_ID`: NVIDIA Project ID (default: `test-project`)
|
|
- `NVIDIA_CUSTOMIZER_URL`: NVIDIA Customizer URL (default: `https://customizer.api.nvidia.com`)
|
|
- `NVIDIA_OUTPUT_MODEL_DIR`: NVIDIA Output Model Directory (default: `test-example-model@v1`)
|
|
- `GUARDRAILS_SERVICE_URL`: URL for the NeMo Guardrails Service (default: `http://0.0.0.0:7331`)
|
|
- `INFERENCE_MODEL`: Inference model (default: `Llama3.1-8B-Instruct`)
|
|
- `SAFETY_MODEL`: Name of the model to use for safety (default: `meta/llama-3.1-8b-instruct`)
|
|
|
|
### Models
|
|
|
|
The following models are available by default:
|
|
|
|
- `meta/llama3-8b-instruct (aliases: meta-llama/Llama-3-8B-Instruct)`
|
|
- `meta/llama3-70b-instruct (aliases: meta-llama/Llama-3-70B-Instruct)`
|
|
- `meta/llama-3.1-8b-instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)`
|
|
- `meta/llama-3.1-70b-instruct (aliases: meta-llama/Llama-3.1-70B-Instruct)`
|
|
- `meta/llama-3.1-405b-instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)`
|
|
- `meta/llama-3.2-1b-instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)`
|
|
- `meta/llama-3.2-3b-instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)`
|
|
- `meta/llama-3.2-11b-vision-instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)`
|
|
- `meta/llama-3.2-90b-vision-instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)`
|
|
- `nvidia/llama-3.2-nv-embedqa-1b-v2 `
|
|
- `nvidia/nv-embedqa-e5-v5 `
|
|
- `nvidia/nv-embedqa-mistral-7b-v2 `
|
|
- `snowflake/arctic-embed-l `
|
|
|
|
|
|
### Prerequisite: API Keys
|
|
|
|
Make sure you have access to a NVIDIA API Key. You can get one by visiting [https://build.nvidia.com/](https://build.nvidia.com/).
|
|
|
|
|
|
## Running Llama Stack with NVIDIA
|
|
|
|
You can do this via Conda (build code) or Docker which has a pre-built image.
|
|
|
|
### Via Docker
|
|
|
|
This method allows you to get started quickly without having to build the distribution code.
|
|
|
|
```bash
|
|
LLAMA_STACK_PORT=8321
|
|
docker run \
|
|
-it \
|
|
--pull always \
|
|
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
|
|
-v ./run.yaml:/root/my-run.yaml \
|
|
llamastack/distribution-nvidia \
|
|
--yaml-config /root/my-run.yaml \
|
|
--port $LLAMA_STACK_PORT \
|
|
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
|
```
|
|
|
|
### Via Conda
|
|
|
|
```bash
|
|
llama stack build --template nvidia --image-type conda
|
|
llama stack run ./run.yaml \
|
|
--port 8321 \
|
|
--env NVIDIA_API_KEY=$NVIDIA_API_KEY
|
|
--env INFERENCE_MODEL=$INFERENCE_MODEL
|
|
```
|