forked from phoenix-oss/llama-stack-mirror
1.9 KiB
1.9 KiB
Cerebras Distribution
The llamastack/distribution-cerebras
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
inference | remote::cerebras , inline::sentence-transformers |
safety | inline::llama-guard |
telemetry | inline::meta-reference |
tool_runtime | remote::brave-search , remote::tavily-search , inline::code-interpreter , inline::rag-runtime |
vector_io | inline::faiss , remote::chromadb , remote::pgvector |
Environment Variables
The following environment variables can be configured:
LLAMA_STACK_PORT
: Port for the Llama Stack distribution server (default:8321
)CEREBRAS_API_KEY
: Cerebras API Key (default: ``)
Models
The following models are available by default:
llama3.1-8b (aliases: meta-llama/Llama-3.1-8B-Instruct)
llama-3.3-70b (aliases: meta-llama/Llama-3.3-70B-Instruct)
Prerequisite: API Keys
Make sure you have access to a Cerebras API Key. You can get one by visiting cloud.cerebras.ai.
Running Llama Stack with Cerebras
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run.yaml:/root/my-run.yaml \
llamastack/distribution-cerebras \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY
Via Conda
llama stack build --template cerebras --image-type conda
llama stack run ./run.yaml \
--port 8321 \
--env CEREBRAS_API_KEY=$CEREBRAS_API_KEY