forked from phoenix-oss/llama-stack-mirror
# What does this PR do? - Configured ruff linter to automatically fix import sorting issues. - Set --exit-non-zero-on-fix to ensure non-zero exit code when fixes are applied. - Enabled the 'I' selection to focus on import-related linting rules. - Ran the linter, and formatted all codebase imports accordingly. - Removed the black dep from the "dev" group since we use ruff Signed-off-by: Sébastien Han <seb@redhat.com> [//]: # (If resolving an issue, uncomment and update the line below) [//]: # (Closes #[issue-number]) ## Test Plan [Describe the tests you ran to verify your changes with result summaries. *Provide clear instructions so the plan can be easily re-executed.*] [//]: # (## Documentation) [//]: # (- [ ] Added a Changelog entry if the change is significant) Signed-off-by: Sébastien Han <seb@redhat.com> |
||
---|---|---|
.. | ||
modules | ||
page | ||
__init__.py | ||
app.py | ||
README.md | ||
requirements.txt |
(Experimental) LLama Stack UI
Docker Setup
⚠️ This is a work in progress.
Developer Setup
- Start up Llama Stack API server. More details here.
llama stack build --template together --image-type conda
llama stack run together
- (Optional) Register datasets and eval tasks as resources. If you want to run pre-configured evaluation flows (e.g. Evaluations (Generation + Scoring) Page).
$ llama-stack-client datasets register \
--dataset-id "mmlu" \
--provider-id "huggingface" \
--url "https://huggingface.co/datasets/llamastack/evals" \
--metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \
--schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}'
$ llama-stack-client eval_tasks register \
--eval-task-id meta-reference-mmlu \
--provider-id meta-reference \
--dataset-id mmlu \
--scoring-functions basic::regex_parser_multiple_choice_answer
- Start Streamlit UI
cd llama_stack/distribution/ui
pip install -r requirements.txt
streamlit run app.py