# What does this PR do? - add /eval, /scoring, /datasetio API providers to distribution templates - regenerate build.yaml / run.yaml files - fix `template.py` to take in list of providers instead of only first one - override memory provider as faiss default for all distro (as only 1 memory provider is needed to start basic flow, chromadb/pgvector need additional setup step). ``` python llama_stack/scripts/distro_codegen.py ``` - updated README to start UI via conda builds. ## Test Plan ``` python llama_stack/scripts/distro_codegen.py ``` - Use newly generated `run.yaml` to start server ``` llama stack run ./llama_stack/templates/together/run.yaml ``` <img width="1191" alt="image" src="https://github.com/user-attachments/assets/62f7d179-0cd0-427c-b6e8-e087d4648f09"> #### Registration ``` ❯ llama-stack-client datasets register \ --dataset-id "mmlu" \ --provider-id "huggingface" \ --url "https://huggingface.co/datasets/llamastack/evals" \ --metadata '{"path": "llamastack/evals", "name": "evals__mmlu__details", "split": "train"}' \ --schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}' ❯ llama-stack-client datasets list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ metadata ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩ │ mmlu │ huggingface │ {'path': 'llamastack/evals', 'name': │ dataset │ │ │ │ 'evals__mmlu__details', 'split': │ │ │ │ │ 'train'} │ │ └────────────┴─────────────┴─────────────────────────────────────────┴─────────┘ ``` ``` ❯ llama-stack-client datasets register \ --dataset-id "simpleqa" \ --provider-id "huggingface" \ --url "https://huggingface.co/datasets/llamastack/evals" \ --metadata '{"path": "llamastack/evals", "name": "evals__simpleqa", "split": "train"}' \ --schema '{"input_query": {"type": "string"}, "expected_answer": {"type": "string", "chat_completion_input": {"type": "string"}}}' ❯ llama-stack-client datasets list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━┓ ┃ identifier ┃ provider_id ┃ metadata ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━┩ │ mmlu │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__mmlu__details', │ dataset │ │ │ │ 'split': 'train'} │ │ │ simpleqa │ huggingface │ {'path': 'llamastack/evals', 'name': 'evals__simpleqa', │ dataset │ │ │ │ 'split': 'train'} │ │ └────────────┴─────────────┴───────────────────────────────────────────────────────────────┴─────────┘ ``` ``` ❯ llama-stack-client eval_tasks register \ > --eval-task-id meta-reference-mmlu \ > --provider-id meta-reference \ > --dataset-id mmlu \ > --scoring-functions basic::regex_parser_multiple_choice_answer ❯ llama-stack-client eval_tasks register \ --eval-task-id meta-reference-simpleqa \ --provider-id meta-reference \ --dataset-id simpleqa \ --scoring-functions llm-as-judge::405b-simpleqa ❯ llama-stack-client eval_tasks list ┏━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━┳━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━┓ ┃ dataset_id ┃ identifier ┃ metadata ┃ provider_id ┃ provider_resour… ┃ scoring_functio… ┃ type ┃ ┡━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━╇━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━┩ │ mmlu │ meta-reference-… │ {} │ meta-reference │ meta-reference-… │ ['basic::regex_… │ eval_task │ │ simpleqa │ meta-reference-… │ {} │ meta-reference │ meta-reference-… │ ['llm-as-judge:… │ eval_task │ └────────────┴──────────────────┴──────────┴────────────────┴──────────────────┴──────────────────┴───────────┘ ``` #### Test with UI ``` streamlit run app.py ``` ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Ran pre-commit to handle lint / formatting issues. - [ ] Read the [contributor guideline](https://github.com/meta-llama/llama-stack/blob/main/CONTRIBUTING.md), Pull Request section? - [ ] Updated relevant documentation. - [ ] Wrote necessary unit or integration tests.
4.2 KiB
orphan |
---|
true |
TGI Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-tgi
distribution consists of the following provider configurations.
API | Provider(s) |
---|---|
agents | inline::meta-reference |
datasetio | remote::huggingface , inline::localfs |
eval | inline::meta-reference |
inference | remote::tgi |
memory | inline::faiss , remote::chromadb , remote::pgvector |
safety | inline::llama-guard |
scoring | inline::basic , inline::llm-as-judge , inline::braintrust |
telemetry | inline::meta-reference |
You can use this distribution if you have GPUs and want to run an independent TGI server container for running inference.
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT
: Port for the Llama Stack distribution server (default:5001
)INFERENCE_MODEL
: Inference model loaded into the TGI server (default:meta-llama/Llama-3.2-3B-Instruct
)TGI_URL
: URL of the TGI server with the main inference model (default:http://127.0.0.1:8080}/v1
)TGI_SAFETY_URL
: URL of the TGI server with the safety model (default:http://127.0.0.1:8081/v1
)SAFETY_MODEL
: Name of the safety (Llama-Guard) model to use (default:meta-llama/Llama-Guard-3-1B
)
Setting up TGI server
Please check the TGI Getting Started Guide to get a TGI endpoint. Here is a sample script to start a TGI server locally via Docker:
export INFERENCE_PORT=8080
export INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct
export CUDA_VISIBLE_DEVICES=0
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $INFERENCE_PORT:$INFERENCE_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--cuda-memory-fraction 0.7 \
--model-id $INFERENCE_MODEL \
--port $INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, then you will need to also run another instance of a TGI with a corresponding safety model like meta-llama/Llama-Guard-3-1B
using a script like:
export SAFETY_PORT=8081
export SAFETY_MODEL=meta-llama/Llama-Guard-3-1B
export CUDA_VISIBLE_DEVICES=1
docker run --rm -it \
-v $HOME/.cache/huggingface:/data \
-p $SAFETY_PORT:$SAFETY_PORT \
--gpus $CUDA_VISIBLE_DEVICES \
ghcr.io/huggingface/text-generation-inference:2.3.1 \
--dtype bfloat16 \
--usage-stats off \
--sharded false \
--model-id $SAFETY_MODEL \
--port $SAFETY_PORT
Running Llama Stack
Now you are ready to run Llama Stack with TGI as the inference provider. You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=5001
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-tgi \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
docker run \
-it \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
-v ./run-with-safety.yaml:/root/my-run.yaml \
llamastack/distribution-tgi \
--yaml-config /root/my-run.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://host.docker.internal:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://host.docker.internal:$SAFETY_PORT
Via Conda
Make sure you have done pip install llama-stack
and have the Llama Stack CLI available.
llama stack build --template tgi --image-type conda
llama stack run ./run.yaml
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT
If you are using Llama Stack Safety / Shield APIs, use:
llama stack run ./run-with-safety.yaml \
--port $LLAMA_STACK_PORT \
--env INFERENCE_MODEL=$INFERENCE_MODEL \
--env TGI_URL=http://127.0.0.1:$INFERENCE_PORT \
--env SAFETY_MODEL=$SAFETY_MODEL \
--env TGI_SAFETY_URL=http://127.0.0.1:$SAFETY_PORT