forked from phoenix-oss/llama-stack-mirror
# What does this PR do? switch sambanova inference adaptor to LiteLLM usage to simplify integration and solve issues with current adaptor when streaming and tool calling, models and templates updated ## Test Plan pytest -s -v tests/integration/inference/test_text_inference.py --stack-config=sambanova --text-model=sambanova/Meta-Llama-3.3-70B-Instruct pytest -s -v tests/integration/inference/test_vision_inference.py --stack-config=sambanova --vision-model=sambanova/Llama-3.2-11B-Vision-Instruct
2.6 KiB
2.6 KiB
| orphan |
|---|
| true |
SambaNova Distribution
:maxdepth: 2
:hidden:
self
The llamastack/distribution-sambanova distribution consists of the following provider configurations.
| API | Provider(s) |
|---|---|
| agents | inline::meta-reference |
| inference | remote::sambanova, inline::sentence-transformers |
| safety | inline::llama-guard |
| telemetry | inline::meta-reference |
| tool_runtime | remote::brave-search, remote::tavily-search, inline::rag-runtime, remote::model-context-protocol, remote::wolfram-alpha |
| vector_io | inline::faiss, remote::chromadb, remote::pgvector |
Environment Variables
The following environment variables can be configured:
LLAMASTACK_PORT: Port for the Llama Stack distribution server (default:8321)SAMBANOVA_API_KEY: SambaNova API Key (default: ``)
Models
The following models are available by default:
sambanova/Meta-Llama-3.1-8B-Instruct (aliases: meta-llama/Llama-3.1-8B-Instruct)sambanova/Meta-Llama-3.1-405B-Instruct (aliases: meta-llama/Llama-3.1-405B-Instruct-FP8)sambanova/Meta-Llama-3.2-1B-Instruct (aliases: meta-llama/Llama-3.2-1B-Instruct)sambanova/Meta-Llama-3.2-3B-Instruct (aliases: meta-llama/Llama-3.2-3B-Instruct)sambanova/Meta-Llama-3.3-70B-Instruct (aliases: meta-llama/Llama-3.3-70B-Instruct)sambanova/Llama-3.2-11B-Vision-Instruct (aliases: meta-llama/Llama-3.2-11B-Vision-Instruct)sambanova/Llama-3.2-90B-Vision-Instruct (aliases: meta-llama/Llama-3.2-90B-Vision-Instruct)sambanova/Llama-4-Scout-17B-16E-Instruct (aliases: meta-llama/Llama-4-Scout-17B-16E-Instruct)sambanova/Llama-4-Maverick-17B-128E-Instruct (aliases: meta-llama/Llama-4-Maverick-17B-128E-Instruct)sambanova/Meta-Llama-Guard-3-8B (aliases: meta-llama/Llama-Guard-3-8B)
Prerequisite: API Keys
Make sure you have access to a SambaNova API Key. You can get one by visiting SambaNova.ai.
Running Llama Stack with SambaNova
You can do this via Conda (build code) or Docker which has a pre-built image.
Via Docker
This method allows you to get started quickly without having to build the distribution code.
LLAMA_STACK_PORT=8321
docker run \
-it \
--pull always \
-p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
llamastack/distribution-sambanova \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY
Via Conda
llama stack build --template sambanova --image-type conda
llama stack run ./run.yaml \
--port $LLAMA_STACK_PORT \
--env SAMBANOVA_API_KEY=$SAMBANOVA_API_KEY