llama-stack/docs/source/distributions/self_hosted_distro/meta-reference-gpu.md
Dinesh Yeduguru a5c57cd381
agents to use tools api (#673)
# What does this PR do?

PR #639 introduced the notion of Tools API and ability to invoke tools
through API just as any resource. This PR changes the Agents to start
using the Tools API to invoke tools. Major changes include:
1) Ability to specify tool groups with AgentConfig
2) Agent gets the corresponding tool definitions for the specified tools
and pass along to the model
3) Attachements are now named as Documents and their behavior is mostly
unchanged from user perspective
4) You can specify args that can be injected to a tool call through
Agent config. This is especially useful in case of memory tool, where
you want the tool to operate on a specific memory bank.
5) You can also register tool groups with args, which lets the agent
inject these as well into the tool call.
6) All tests have been migrated to use new tools API and fixtures
including client SDK tests
7) Telemetry just works with tools API because of our trace protocol
decorator


## Test Plan
```
pytest -s -v -k fireworks llama_stack/providers/tests/agents/test_agents.py  \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

pytest -s -v -k together  llama_stack/providers/tests/tools/test_tools.py \
   --safety-shield=meta-llama/Llama-Guard-3-8B \
   --inference-model=meta-llama/Llama-3.1-8B-Instruct

LLAMA_STACK_CONFIG="/Users/dineshyv/.llama/distributions/llamastack-together/together-run.yaml" pytest -v tests/client-sdk/agents/test_agents.py
```
run.yaml:
https://gist.github.com/dineshyv/0365845ad325e1c2cab755788ccc5994

Notebook:
https://colab.research.google.com/drive/1ck7hXQxRl6UvT-ijNRZ-gMZxH1G3cN2d?usp=sharing
2025-01-08 19:01:00 -08:00

3.5 KiB

orphan
true

Meta Reference Distribution

:maxdepth: 2
:hidden:

self

The llamastack/distribution-meta-reference-gpu distribution consists of the following provider configurations:

API Provider(s)
agents inline::meta-reference
datasetio remote::huggingface, inline::localfs
eval inline::meta-reference
inference inline::meta-reference
memory inline::faiss, remote::chromadb, remote::pgvector
safety inline::llama-guard
scoring inline::basic, inline::llm-as-judge, inline::braintrust
telemetry inline::meta-reference
tool_runtime remote::brave-search, remote::tavily-search, inline::code-interpreter, inline::memory-runtime

Note that you need access to nvidia GPUs to run this distribution. This distribution is not compatible with CPU-only machines or machines with AMD GPUs.

Environment Variables

The following environment variables can be configured:

  • LLAMASTACK_PORT: Port for the Llama Stack distribution server (default: 5001)
  • INFERENCE_MODEL: Inference model loaded into the Meta Reference server (default: meta-llama/Llama-3.2-3B-Instruct)
  • INFERENCE_CHECKPOINT_DIR: Directory containing the Meta Reference model checkpoint (default: null)
  • SAFETY_MODEL: Name of the safety (Llama-Guard) model to use (default: meta-llama/Llama-Guard-3-1B)
  • SAFETY_CHECKPOINT_DIR: Directory containing the Llama-Guard model checkpoint (default: null)

Prerequisite: Downloading Models

Please make sure you have llama model checkpoints downloaded in ~/.llama before proceeding. See installation guide here to download the models. Run llama model list to see the available models to download, and llama model download to download the checkpoints.

$ ls ~/.llama/checkpoints
Llama3.1-8B           Llama3.2-11B-Vision-Instruct  Llama3.2-1B-Instruct  Llama3.2-90B-Vision-Instruct  Llama-Guard-3-8B
Llama3.1-8B-Instruct  Llama3.2-1B                   Llama3.2-3B-Instruct  Llama-Guard-3-1B              Prompt-Guard-86M

Running the Distribution

You can do this via Conda (build code) or Docker which has a pre-built image.

Via Docker

This method allows you to get started quickly without having to build the distribution code.

LLAMA_STACK_PORT=5001
docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  llamastack/distribution-meta-reference-gpu \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct

If you are using Llama Stack Safety / Shield APIs, use:

docker run \
  -it \
  -p $LLAMA_STACK_PORT:$LLAMA_STACK_PORT \
  -v ~/.llama:/root/.llama \
  llamastack/distribution-meta-reference-gpu \
  --port $LLAMA_STACK_PORT \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
  --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B

Via Conda

Make sure you have done pip install llama-stack and have the Llama Stack CLI available.

llama stack build --template meta-reference-gpu --image-type conda
llama stack run distributions/meta-reference-gpu/run.yaml \
  --port 5001 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct

If you are using Llama Stack Safety / Shield APIs, use:

llama stack run distributions/meta-reference-gpu/run-with-safety.yaml \
  --port 5001 \
  --env INFERENCE_MODEL=meta-llama/Llama-3.2-3B-Instruct \
  --env SAFETY_MODEL=meta-llama/Llama-Guard-3-1B